Influent and Effluent Data Summary II. The results of all analyses performed on the WWTP influent and effluent are summarized in tables with monthly and annual averages (and in some cases annual totals) calculated. Graphs of monthly averages are presented. - A. **Mass Emissions** - **Discharge Limits** B. - Influent and Effluent Data Summaries C. - Influent and Effluent Graphs D. - Daily Values of selected Parameters E. - **Toxicity Bioassays** F. - 6-Year Tables G. #### A. Mass Emissions ### Mass Emissions of Effluent Using 2009 Monthly Averages DISCHARGE SPECIFICATIONS from NPDES Permit No. CA0107409/RWQCB Order No. R-2002-0025 effective on September 13, 2002 with limits on pollutant discharges. | | Benchmarks | 2009 | 2009 | | |--------------------------------------|---------------|------------------|---------------|-------| | | | Mass | | | | | (mt/yr) | Emissions | Concentration | | | Constituent/Property | | (mt/yr) | | Units | | Flow (MGD) | | | 153.3 | MGD | | Total Suspended Solids | <u>13,995</u> | 6,774 | 32 | mg/L | | BOD | - | 21,168 | 100 | mg/L | | Arsenic | 0.88 | 0.17 | 0.79 | ug/L | | Cadmium | 1.4 | 0.00 | 0.00 | ug/L | | Chromium | 14.2 | 0.34 | 1.6 | ug/L | | Copper | 26 | 4.28 | 20.2 | ug/L | | Lead | 14.2 | 0.00 | 0.0 | ug/L | | Mercury | 0.19 | 0.00 | 0.00 | ug/L | | Nickel | 11.3 | 1.55 | 7.3 | ug/L | | Selenium | 0.44 | 0.28 | 1.33 | ug/L | | Silver | 2.8 | 0.01 | 0.03 | ug/L | | Zinc | 18.3 | 5.08 | 24 | ug/L | | Cyanide | 1.57 | 0.42 | 0.002 | mg/L | | Residual Chlorine | | 1.06 | 0.005 | mg/L | | Ammonia | 8018 | 6,686 | 31.5 | mg/L | | Non-Chor. Phenols | 2.57 | 3.05 | 14.4 | ug/L | | Chlorinated Phenols | 1.73 | 0.00 | 0.0 | ug/L | | Endosulfan | 0.006 | 0.00 | 0 | ng/L | | Endrin | 0.008 | 0.00 | 0 | ng/L | | hexachlorocyclohexanes | 0.025 | 0 | 0 | ng/L | | *(HCH) | | | | | | * (all as Lindane, the gamma isomer) | | | | | | Acrolein | 17.6 | 0.00 | 0 | ug/L | | Antimony | 56.6 | 0.00 | 0.0 | ug/L | | Bis(2-chloroethoxy) methane | 1.5 | 0.00 | 0 | ug/L | | Bis(2-chloroisopropyl) ether | 1.61 | 0.00 | 0 | ug/L | | Chlorobenzene | 1.7 | 0.00 | 0.0 | ug/L | | Chromium (III) | | | | | | di-n-butyl phthalate | 1.33 | 0.00 | 0 | ug/L | | dichlorobenzenes | 2.8 | 0.01 | 0.03 | ug/L | | 1,1-dichloroethylene | 0.79 | 0.00 | 0 | ug/L | | Diethyl phthalate | 6.23 | 1.44 | 6.8 | ug/L | | Dimethyl phthalate | 1.59 | 0.00 | 0 | ug/L | | 4,6-dinitro-2-methylphenol | 6.8 | 0.00 | 0 | ug/L | | 2,4-dinitrophenol | 11.9 | 0.00 | 0 | ug/L | | Ethylbenzene | 2.04 | 0.06 | 0.3 | ug/L | | Fluoranthene | 0.62 | 0.00 | 0 | ug/L | | Hexachlorocyclopentadiene | - | 0.00 | 0 | ug/L | | | Benchmarks | 2009 | 2009 | | |-----------------------------|------------|------------------------------|---------------|-------| | Constituent/Property | (mt/yr) | Mass
Emissions
(mt/yr) | Concentration | Units | | Nitrobenzene | 2.07 | 0.00 | 0 | ug/L | | Thallium | 36.8 | 0.00 | 0.0 | ug/L | | Toluene | 3.31 | 0.34 | 1.6 | ug/L | | 1,1,2,2-tetrachloroethane | 1.95 | 0.00 | 0 | ug/L | | Tributyltin | 0.001 | 0.00 | 0 | ug/L | | 1,1,1-trichloroethane | 2.51 | 0.00 | 0 | ug/L | | 1,1,2-trichloroethane | 1.42 | 0.00 | 0 | ug/L | | Acrylonitrile | 5.95 | 0.00 | 0 | ug/L | | Aldrin | 0.006 | 0.00 | 0 | ng/L | | Benzene | 1.25 | 0.00 | 0 | ug/L | | Benzidine | 12.5 | 0.00 | 0 | ug/L | | Beryllium | 1.42 | 0.001 | 0.003 | ug/L | | Bis(2-chloroethyl) ether | 1.61 | 0.00 | 0 | ug/L | | Bis(2-ethylhexyl) phthalate | 2.89 | 0.00 | 0.0 | ug/L | | Carbon Tetrachloride | 0.79 | 0.00 | 0 | ug/L | | Chlordane | 0.014 | 0.0000 | 0 | ng/L | | Chloroform | 2.19 | 1.10 | 5.2 | ug/L | | DDT | 0.043 | 0.00 | 0 | ng/L | | 1,4-dichlorobenzene | 1.25 | 0.08 | 0.4 | ug/L | | 3,3-dichlorobenzidine | 4.67 | 0.00 | 0 | ug/L | | 1,2-dichloroethane | 0.79 | 0.00 | 0 | ug/L | | Dichloromethane (methylene | 13.7 | 0.57 | 2.7 | ug/L | | chloride) | | | | | | 1,3-dichloropropene | 1.42 | 0.00 | 0 | ug/L | | Dieldrin | 0.011 | 0.00 | 0 | ng/L | | 2,4-dinitrotoluene | 1.61 | 0.00 | 0 | ug/L | | 1,2-diphenylhydrazine | 1.52 | 0.00 | 0 | ug/L | | Halomethanes | 5.86 | 1.50 | 7.1 | ug/L | | Heptachlor | 0.001 | 0.00 | 0 | ng/L | | Heptachlor epoxide | 0.024 | 0.00 | 0 | ng/L | | Hexachlorobenzene | 0.54 | 0.00 | 0 | ug/L | | Hexachlorobutadiene | 0.054 | 0.00 | 0 | ug/L | | Hexachloroethane | 1.13 | 0.00 | 0 | ug/L | | Isophorone | 0.71 | 0.00 | 0 | ug/L | | N-nitrosodimethylamine | 0.76 | 0.00 | 0 | ug/L | | N-nitrosodiphenylamine | 1.47 | 0.00 | 0 | ug/L | | PAHs | 15.45 | 0.00 | 0 | ug/L | | PCBs | 0.275 | 0.00 | 0 | ng/L | | TCDD equivalents | | 0.000000000 | 0.000 | pg/L | | Tetrachloroethylene | 4 | 0.00 | 0 | ug/L | | Toxaphene | 0.068 | 0.00 | 0 | ng/L | | Trichloroethylene | 1.56 | 0.00 | 0 | ug/L | | 2,4,6-trichlorophenol | 0.96 | 0.00 | 0 | ug/L | | Vinyl Chloride | 0.4 | 0.00 | 0 | ug/L | #### B. Discharge Limits #### NPDES Permit No. CA0107409/RWQCB Order No. R-2002-0025 DISCHARGE SPECIFICATIONS from NPDES Permit No. CA0107409/RWQCB Order No. R-2002-0025 effective on September 13, 2002 with limits on pollutant discharges. The discharge of waste through the Point Loma Ocean Outfall containing pollutants in excess of the following effluent limitations are prohibited: | Constituent | Units | 6-month
Median | 30-day
Average | 7-Day
Average | Daily
Maximum | Instantaneous
Maximum | |---|----------------|-------------------------------|-------------------|-------------------|------------------|--------------------------| | Biochemical Oxygen
Demand
BOD ₅ @ 20°C | mg/L | The "Mean Ann emission limit. | ual Percent Rer | noval" limit for | BOD is 58%. | There is no mass | | Total Suspended Solids ⁸ | mg/L
lb/day | | 75
13,599 | | | | | pH | pH units | | Within the 1 | imits of 6.0 - 9. | 0 at all times. | | | Grease & Oil | mg/L
lb/day | | 25
34,000 | 40
68,000 | | 75
130,000 | | Settleable Solids | mL/L | | 1.0 | 1.5 | | 3.0 | | Turbidity | NTU | | 75 | 100 | | 225 | | Acute Toxicity | TUa | | | | 6.5 | | | Arsenic | ug/L | 1,000 | | | 5,900 | 16,000 | | Cadmium | ug/L | 200 | | | 800 | 2,100 | | Chromium ⁹ (Hexavalent) | ug/L | 400 | | | 2,000 | 4,100 | | Copper | ug/L | 200 | | | 2,100 | 5,700 | | Lead | ug/L | 400 | | | 2,000 | 4,100 | | Mercury | ug/L | 8.1 | | | 33 | 80 | | Nickel | ug/L | 1,000 | | | 4,100 | 10,000 | | Selenium | ug/L | 3,100 | | | 12,000 | 30,800 | | Silver | ug/L | 100 | | | 540 | 1,000 | | Zinc | ug/L | 2,500 | | | 15,000 | 39,400 | | Cyanide | mg/L | 0.2 | | | 0.8 | 2.1 | | Total Residual
Chlorine(TRC) | mg/L | 0.400 | | | 2.0 | 12 | | Ammonia (expressed as Nitrogen) | mg/L | 123 | | | 492 | 1,230 | | Chronic Toxicity | TUc | | | | 205 | | | Phenolic Compounds
(non- chlorinated) | ug/L | 6,200 | | | 24,600 | 61,500 | | Chlorinated Phenolics | ug/L | 200 | | | 800 | 2,100 | | Endosulfan | ng/L | 2,000 | | | 3,700 | 5,500 | | Endrin | ng/L | 400 | | | 800 | 1,000 | | HCH (hexachlorocyclohexanes) | ng/L
lb/day | 800 | | | 2,000 | 2,500 | ⁸ Total Suspended Solids (TSS)- The discharger shall achieve a mass emission of TSS of no greater than 15,000 mt/yr; this requirement shall be effective through December 31, 2005. Effective January 1, 2006, the discharger shall achieve a mass emission of TSS of no greater than 13,599 mt/yr. These mass emission requirements shall only apply to TSS discharged from POTWs which are owned and operated by the discharger, and the discharger's wastewater generated in the Metro System service area. These mass emission requirements do not apply to wastewater (and the resulting TSS) generated in Mexico as a result of upset or shutdown and treated at and discharged from the PLMWTP. ⁹ Hexavalent Chromium limit met as Total Chromium. | LIMITATIONS FOR PROTECTION OF | | | | | | | | | |-------------------------------|-------|-------------|--|--|--|--|--|--| | HUMAN HEALTHNONCARCINOGENS | | | | | | | | | | Constituent | Units | Monthly | | | | | | | | | | Average | | | | | | | | | | (30-Day) | | | | | | | | Acrolein | ug/L | 45,000 | | | | | | | | Antimony | ug/L | 250,000 | | | | | | | | Bis(2-chloroethoxy) | ug/L | 900 | | | | | | | | methane | | | | | | | | | | Bis(2-chloroisopropyl) ether | ug/L | 250,000 | | | | | | | | Chlorobenzene | ug/L | 120,000 | | | | | | | | Chromium (III) ¹⁰ | ug/L | 39,000,000 | | | | | | | | di-n-butyl phthalate | ug/L | 720,000 | | | | | | | | dichlorobenzenes | ug/L | 1,000,000 | | | | | | | | Diethyl phthalate | ug/L | 6,800,000 | | | | | | | | Dimethyl phthalate | ug/L | 170,000,000 | | | | | | | | 4,6-dinitro-2-methylphenol | ug/L | 45,000 | | | | | | | | 2,4-dinitrophenol | ug/L | 820 | | | | | | | | Ethylbenzene | ug/L | 840,000 | | | | | | | | Fluoranthene | ug/L | 3,100 | | | | | | | | Hexachlorocyclopentadiene | ug/L | 12,000 | | | | | | | | Nitrobenzene | ug/L | 1,000 | | | | | | | | Thallium | ug/L | 400 | | | | | | | | Toluene | ug/L | 17,000,000 | | | | | | | | Tributyltin | ug/L | 0.29 | | | | | | | | 1,1,1-trichloroethane | ug/L | 110,000,000 | | | | | | | | LIMITATIONS FOR PROTECTION OF HUMAN HEALTH—CARCINOGENS | | | | | | | | | |--|-------|------------------|--|--|--|--|--|--| | Constituent | Units | Monthly | | | | | | | | | | Average (30-Day) | | | | | | | | Acrylonitrile | ug/L | 21 | | | | | | | | Aldrin | ng/L | 4.5 | | | | | | | | Benzene | ug/L | 1,200 | | | | | | | | Benzidine | ug/L | 0.014 | | | | | | | | Beryllium | ug/L | 6.8 | | | | | | | | Bis(2-chloroethyl)ether | ug/L | 9.2 | | | | | | | | Bis(2-ethylhexyl)phthalate | ug/L | 720 | | | | | | | | Carbon Tetrachloride | ug/L | 180 | | | | | | | | Chlordane | ng/L | 4.7 | | | | | | | | Chloroform | ug/L | 27,000 | | | | | | | | DDT | ng/L | 35 | | | | | | | | 1,1,2,2-tetrachloroethane | ug/L | 470 | | | | | | | | 1,1-dichloroethylene | ug/L | 200 | | | | | | | | 1,1,2-trichloroethane | ug/L | 1,900 | | | | | | | |
1,4-dichlorobenzene | ug/L | 3,700 | | | | | | | | 3,3-dichlorobenzidine | ug/L | 1.7 | | | | | | | | 1,2-dichloroethane | ug/L | 5,700 | | | | | | | | Dichloromethane | ug/L | 92,000 | | | | | | | | 1,3-dichloropropene | ug/L | 1,800 | | | | | | | | Dieldrin | ng/L | 8.20 | | | | | | | | 2,4-dinitrotoluene | ug/L | 530 | | | | | | | | 1,2-diphenylhydrazine | ug/L | 33 | | | | | | | | Halomethanes | ug/L | 27,000 | | | | | | | | Heptachlor | ng/L | 10 | | | | | | | | Hexachlorobenzene | ug/L | 0.043 | | | | | | | | Hexachlorobutadiene | ug/L | 2,900 | | | | | | | | Hexachloroethane | ug/L | 510 | | | | | | | | Isophorone | ug/L | 150,000 | | | | | | | | N-nitrosodimethylamine | ug/L | 1,500 | | | | | | | | N-nitrosodiphenylamine | ug/L | 510 | | | | | | | | PAHs | ug/L | 1.80 | | | | | | | | PCBs | ng/L | 3.90 | | | | | | | | TCDD equivalents | pg/L | 0.8 | | | | | | | | Tetrachloroethylene | ug/L | 410 | | | | | | | | Toxaphene | ng/L | 430 | | | | | | | | Trichloroethylene | ug/L | 5,500 | | | | | | | | Vinyl Chloride | ug/L | 7,400 | | | | | | | $^{^{\}rm 10}$ Chromium (III) limit is met by Total Chromium. #### C. Influent and Effluent Data Summaries The results of all analyses performed on the WWTP influent and effluent are summarized in tables with monthly and annual averages (and in some cases annual totals) calculated. ### October 30th, 2009 Anomalous Effluent Data The 24-hour effluent composite sample for October 30th, 2009 has been abstracted in this report. Extreme and uncharacteristically high values for TSS and BOD determinations, 580mg/L and 267 mg/L respectively, were obtained on the October 30th, 2009 effluent composite sample. These data points are inconsistent with real-time process monitoring data and are magnitudes higher than past annual maximum values for this sample stream and are considered to be erroneous outliers. These anomalous data points would result in negative daily removals. Effluent values elevated to this extreme level would indicate a catastrophic failure of plant processes, which would have been noticed by plant staff, documented by automated plant process monitoring equipment and recorded as data in the Distributed Control System (DCS). An immediate and through investigation of plant operational data and logs, as well as, laboratory records show no such failures; all measures indicate plant operating within nominal parameters. Utilization of these data points would have resulted in monthly system wide adjusted removals for BOD and TSS of 67.9% and 85.6% respectively, while demonstrating compliance with the permit limits the use of the extraneous data points for the October 30th, 2009 effluent composite sample would not accurately portray the removals and would bias statistical analyses. Last year's average BOD and TSS values were used in calculation of the system-wide removals as stipulated in the permit in place of the anomalous data. Point Loma Wastewater Treatment Plant #### POINT LOMA WASTEWATER TREATMENT PLANT SEWAGE ANNUAL #### From 01-JAN-2009 To 31-DEC-2009 #### Biochemical Oxygen Demand Concentration | | | | | | Daily
Effluent | | Percent
Removal | |-----------|-------|----------|-----------|--------------------|-------------------|--------------------|--------------------| | | | Flow | Value | Value
(lbs/Day) | Value | Value
(lbs/Day) | BOD
(%) | | | | F10W | (IIIg/L)(| (105/Day) | (IIIg/L)(| (105/Day) | (%) | | JANUARY | -2009 | 162.9 |
272 | 369535 | 101 |
137217 | 62.9 | | FEBRUARY | -2009 | 175.9 | 256 | 375554 | 97 | 142300 | 62.1 | | MARCH | -2009 | 158.0 | 290 | 382139 | 100 | 131772 | 65.5 | | APRIL | -2009 | 151.8 | 292 | 369676 | 94 | 119005 | 67.8 | | MAY | -2009 | 148.7 | 292 | 362126 | 103 | 127736 | 64.7 | | JUNE | -2009 | 148.0 | 309 | 381405 | 98 | 120963 | 68.3 | | JULY | -2009 | 148.2 | 292 | 360908 | 95 | 117419 | 67.5 | | AUGUST | -2009 | 148.3 | 298 | 368573 | 102 | 126156 | 65.8 | | SEPTEMBER | -2009 | 149.3 | 296 | 368568 | 97 | 120781 | 67.2 | | OCTOBER | -2009 | 148.8 | 303 | 376021 | 102 | 126581 | 66.3 | | NOVEMBER | -2009 | 143.1 | 310 | 369971 | 106 | 126506 | 65.8 | | DECEMBER | -2009 | 156.1 | 289 | 376242 | 110 | 143206 | 61.9 | | ======= | ===== | ======== | | | | | ====== | | Average | | 153.3 | 292 | 371727 | 100 | 128304 | 65.5 | #### Total Suspended Solids Concentration | | Flow | Daily
Influent
TSS
(mg/L) | Daily
Influent
VSS
(mg/L) | Percent
VSS of
TSS
(%) | Daily
Influent
Value
(lbs/Day) | Daily
Effluent
TSS
(mg/L) | Daily
Effluent
VSS
(mg/L) | Percent
VSS of
TSS
(%) | Daily
Effluent
Value
(lbs/Day) | |----------------|-------|------------------------------------|------------------------------------|---------------------------------|---|------------------------------------|------------------------------------|---------------------------------|---| | JANUARY - 2009 | 162.9 | 279 | 241 |
86.4 |
379045 |
30 | 23 |
76.7 | 40758 | | FEBRUARY -2009 | 175.9 | 263 | 224 | 85.2 | 385823 | 29 | 22 | 75.9 | 42543 | | MARCH -2009 | 158.0 | 303 | 259 | 85.5 | 399269 | 31 | 23 | 74.2 | 40849 | | APRIL -2009 | 151.8 | 317 | 276 | 87.1 | 401326 | 29 | 23 | 79.3 | 36714 | | MAY -2009 | 148.7 | 324 | 280 | 86.4 | 401811 | 32 | 24 | 75.0 | 39685 | | JUNE -2009 | 148.0 | 330 | 281 | 85.2 | 407326 | 30 | 23 | 76.7 | 37030 | | JULY -2009 | 148.2 | 317 | 270 | 85.2 | 391808 | 31 | 24 | 77.4 | 38316 | | AUGUST -2009 | 148.3 | 326 | 277 | 85.0 | 403204 | 34 | 27 | 79.4 | 42052 | | SEPTEMBER-2009 | 149.3 | 323 | 275 | 85.1 | 402187 | 33 | 25 | 75.8 | 41090 | | OCTOBER -2009 | 148.8 | 308 | 262 | 85.1 | 382226 | 31 | 23 | 74.2 | 38471 | | NOVEMBER -2009 | 143.1 | 306 | 257 | 84.0 | 365197 | 32 | 24 | 75.0 | 38191 | | DECEMBER -2009 | 156.1 | 300 | 253 | 84.3 | 390562 | 36 | 28 | 77.8 | 46867 | | A | 152.2 | 200 | 262 | | 202482 | | | ======= | 40214 | | Average | 153.3 | 308 | 263 | | 392482 | 32 | 24 | | 40214 | | | | Percent | Percent | |-----------|--------|---------|---------| | | | Removal | Removal | | | | TSS | VSS | | | | (%) | (%) | | | | | | | JANUARY | -2009 | 89.2 | 90.5 | | FEBRUARY | -2009 | 89.0 | 90.2 | | MARCH | -2009 | 89.8 | 91.1 | | APRIL | -2009 | 90.9 | 91.7 | | MAY | -2009 | 90.1 | 91.4 | | JUNE | -2009 | 90.9 | 91.8 | | JULY | -2009 | 90.2 | 91.1 | | AUGUST | -2009 | 89.6 | 90.3 | | SEPTEMBER | R-2009 | 89.8 | 90.9 | | OCTOBER | -2009 | 89.9 | 91.2 | | NOVEMBER | -2009 | 89.5 | 90.7 | | DECEMBER | -2009 | 88.0 | 88.9 | | | | | | | Average | | 89.7 | 90.8 | Annual Mass Emissions are calculated from monthly averages of flow and TSS, whereas Monthly Report average mass emissions are calculated from average daily mass emissions. #### POINT LOMA WASTEWATER TREATMENT PLANT #### Systemwide BOD Removals - 2009 | | Pt. Loma | NCWRP | NCWRP | MBC | NCWRP | Total | Pt. Loma | System wide | Pt. Loma | Pt. Loma | |-------|-----------|-----------|-------------|-----------|-----------|-----------|-----------|-------------|----------|-----------| | | Influent | PS64 | Penasquitos | Return | Return | Return | Effluent | Adjusted | Daily | Daily | | | Mass BOD | BOD | BOD | | MONTH | Emissions Removals | Removals | Eff Conc. | | | | | | | | | | | | | | 09-01 | 369,460 | 29,594 | 8,868 | 8,560 | 6,165 | 14,725 | 137,170 | 65.0 | 62.7 | 101 | | 09-02 | 374,507 | 23,007 | 13,295 | 4,327 | 7,126 | 11,453 | 142,223 | 64.3 | 62.0 | 97 | | 09-03 | 382,029 | 33,924 | 14,584 | 4,701 | 19,997 | 24,698 | 131,805 | 67.3 | 65.4 | 100 | | 09-04 | 369,427 | 29,912 | 14,460 | 5,624 | 7,145 | 12,769 | 119,452 | 70.2 | 67.6 | 94 | | 09-05 | 361,805 | 29,206 | 12,945 | 6,583 | 12,719 | 19,302 | 126,898 | 66.9 | 64.9 | 102 | | 09-06 | 380,968 | 32,307 | 11,561 | 7,388 | 3,708 | 11,096 | 120,928 | 70.7 | 68.1 | 98 | | 09-07 | 360,279 | 32,721 | 10,246 | 7,026 | 17,796 | 24,822 | 117,485 | 68.2 | 67.3 | 95 | | 09-08 | 369,155 | 28,722 | 15,853 | 7,209 | 1,708 | 8,917 | 125,764 | 68.9 | 65.8 | 102 | | 09-09 | 368,130 | 29,829 | 15,505 | 7,045 | 2,819 | 9,864 | 120,675 | 70.0 | 67.1 | 97 | | 09-10 | 375,603 | 30,656 | 16,209 | 5,113 | 8,178 | 13,291 | 126,299 | 69.0 | 66.2 | 102 | | 09-11 | 370,036 | 31,574 | 16,056 | 8,159 | 15,099 | 23,258 | 126,814 | 67.6 | 65.5 | 106 | | 09-12 | 372,907 | 26,978 | 15,887 | 4,636 | 12,483 | 17,119 | 141,791 | 64.3 | 61.7 | 109 | | avg | 371,192 | 29,869 | 13,789 | 6,364 | 9,579 | 15,943 | 128,109 | 67.7 | 65.4 | 100.3 | #### POINT LOMA WASTEWATER TREATMENT PLANT #### Systemwide TSS Removals - 2009 | | Pt. Loma | NCWRP | NCWRP | MBC | NCWRP | Total | Pt. Loma | System wide | Pt. Loma | Pt. Loma | |-------|-----------|-----------|-------------|-----------|-----------|-----------|-----------|-------------|----------|-----------| | | Influent | PS64 | Penasquitos | Return | Return | Return | Effluent | Adjusted | Daily | Daily | | | Mass TSS | TSS | TSS | | MONTH | Emissions Removals | Removals | Eff Conc. | | | | | | | | | | | | | | 09-01 | 379,657 | 31,965 | 14,845 | 28,463 | 10,518 | 38,981 | 41,479 | 89.1 | 89.0 | 31 | | 09-02 | 383,727 | 23,581 | 20,573 | 10,754 | 11,180 | 21,934 | 41,993 | 89.7 | 89.1 | 29 | | 09-03 | 399,162 | 29,684 | 19,063 | 8,839 | 24,171 | 33,011 | 40,033 | 90.3 | 89.9 | 30 | | 09-04 | 401,459 | 27,922 | 20,268 | 14,440 | 9,881 | 24,320 | 37,187 | 91.2 | 90.7 | 29 | | 09-05 | 401,505 | 29,928 | 20,077 | 24,192 | 26,372 | 50,563 | 39,298 | 89.9 | 90.1 | 32 | | 09-06 | 407,568 | 31,497 | 18,146 | 24,415 | 7,553 | 31,968 | 37,303 | 91.1 | 90.8 | 30 | | 09-07 | 391,173 | 32,736 | 13,295 | 18,800 | 24,734 | 43,535 | 38,852 | 86.6 | 90.0 | 31 | | 09-08 | 402,658 | 29,172 | 22,561 | 22,454 | 2,978 | 25,432 | 42,360 | 89.9 | 89.2 | 34 | | 09-09 | 401,211 | 32,117 | 22,484 | 26,303 | 6,010 | 32,313 | 40,785 | 90.2 | 89.7 | 33 | | 09-10 | 382,775 | 25,813 | 28,468 | 13,340 | 15,967 | 29,307 | 38,017 | 90.6 | 90.0 | 31 | | 09-11 |
365,391 | 29,391 | 20,223 | 17,400 | 15,708 | 33,108 | 37,831 | 89.9 | 89.5 | 32 | | 09-12 | 388,615 | 27,042 | 22,754 | 13,238 | 32,357 | 45,595 | 47,166 | 86.7 | 87.7 | 36 | | | | | | | | | | | | | | avg | 392,075 | 29,237 | 20,230 | 18,553 | 15,619 | 34,172 | 40,192 | 89.6 | 89.6 | 31.5 | Annual mass emissions are calculated from monthly averages of flow and TSS, whereas Monthly Report average mass emissions are calculated from average daily mass emissions. The mass emission for the Return Stream is calculated using data from four NCWRP sources (plant drain, filter backwash, excess primary effluent, and disinfected final effluent that is not reclaimed) and one MBC source (centrate from the dewatering process)that are diverted to the Return Stream. #### POINT LOMA WASTEWATER TREATMENT PLANT #### From 01-JAN-2009 To 31-DEC-2009 #### Effluent to Ocean Outfall (PLE) | | | | Biochemical | Hexane | | | | |----------------|---------|------------|-------------|-------------|-------------|-------------|-------------| | | | Settleable | 0xygen | Extractable | | Floating | | | | рН | Solids | Demand | Material | Temperature | Particulate | esTurbidity | | | | (ml/L) | (mg/L) | (mg/L) | (C) | (mg/L) | (NTU) | | ========= | ======= | ======= | ======= | ======= | ======= | ======= | ======= | | JANUARY -2009 | 7.22 | 0.1 | 101 | 10.0 | 23.3 | ND | 36 | | FEBRUARY -2009 | 7.26 | <0.1 | 97 | 8.3 | 23.0 | ND | 32 | | MARCH - 2009 | 7.25 | 0.1 | 100 | 8.4 | 23.3 | ND | 35 | | APRIL -2009 | 7.25 | 0.2 | 94 | 8.0 | 23.8 | ND | 33 | | MAY -2009 | 7.23 | 0.3 | 103 | 8.3 | 25.1 | ND | 39 | | JUNE -2009 | 7.18 | 0.4 | 98 | 9.4 | 25.8 | ND | 35 | | JULY -2009 | 7.17 | 0.4 | 95 | 9.7 | 27.1 | ND | 39 | | AUGUST -2009 | 7.18 | 0.5 | 102 | 11.2 | 27.9 | ND | 43 | | SEPTEMBER-2009 | 7.18 | 0.3 | 97 | 9.2 | 28.4 | ND | 41 | | OCTOBER -2009 | 7.17 | 0.5 | 102 | 9.6 | 27.2 | ND | 43 | | NOVEMBER -2009 | 7.16 | 0.4 | 106 | 11.5 | 26.1 | ND | 43 | | DECEMBER -2009 | 7.19 | 0.1 | 110 | 11.0 | 24.0 | ND | 37 | | ========= | ======= | ======= | ======= | ======= | ======= | ======= | ======= | | Average | 7.20 | 0.3 | 100 | 9.6 | 25.4 | ND | 38 | #### Influent to Plant (PLR) | | рН | Settleable
Solids
(ml/L) | Biochemical
Oxygen
Demand
(mg/L) | Hexane
Extractable
Material
(mg/L) | | Floating
Particulate
(mg/L) | esTurbidity
(NTU) | |----------------|---------|--------------------------------|---|---|---------|-----------------------------------|----------------------| | =========== | ======= | ======= | ======= | ======= | ======= | ======= | ======= | | JANUARY -2009 | 7.38 | 14.10 | 272 | 41.9 | 23.1 | <1.40 | 136 | | FEBRUARY -2009 | 7.46 | 15.10 | 256 | 38.8 | 22.9 | 1.60 | 134 | | MARCH - 2009 | 7.43 | 15.10 | 290 | 42.4 | 23.2 | 1.73 | 143 | | APRIL -2009 | 7.42 | 15.60 | 292 | 42.8 | 23.8 | <1.40 | 143 | | MAY -2009 | 7.39 | 18.30 | 292 | 50.4 | 25.0 | <1.40 | 142 | | JUNE -2009 | 7.31 | 17.00 | 309 | 48.4 | 25.7 | <1.40 | 146 | | JULY -2009 | 7.31 | 18.90 | 292 | 47.4 | 27.1 | <1.40 | 144 | | AUGUST -2009 | 7.31 | 17.70 | 298 | 43.4 | 28.1 | <1.40 | 140 | | SEPTEMBER-2009 | 7.32 | 17.80 | 296 | 45.6 | 28.2 | <1.40 | 139 | | OCTOBER -2009 | 7.29 | 17.20 | 303 | 44.6 | 27.3 | <1.40 | 144 | | NOVEMBER -2009 | 7.28 | 17.60 | 310 | 50.9 | 26.1 | <1.40 | 139 | | DECEMBER -2009 | 7.33 | 16.00 | 289 | 45.7 | 24.1 | 1.94 | 137 | | | ======= | ======= | ======= | ======= | ======= | ======= | ======= | | Average | 7.35 | 16.7 | 292 | 45.2 | 25.4 | 0.4 | 141 | #### POINT LOMA WASTEWATER TREATMENT PLANT ANNUAL SEWAGE Trace Metals (Limits shown are the 6-Month Median Maximum) From: 01-JAN-2009 to: 31-DEC-2009 | Analyte:
MDL
Units
Source: | 2.9
UG/L
PLR | Antimony
2.9
UG/L
PLE | .4
UG/L
PLR | Arsenic
.4
UG/L
PLE | BerylliumB
.022
UG/L
PLR | .022
UG/L
PLE | Cadmium
.53
UG/L
PLR | Cadmium
.53
UG/L
PLE | |--|---|---|---|--|--|--|-------------------------------|--| | Source: | PLR | ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
N | PLR 1.00 1.19 1.03 1.19 1.22 0.95 1.09 1.57 1.51 1.19 1.00 1.13 | 0.71
0.81
0.47
0.69
0.84
0.75
0.71
1.13
1.10
0.80
0.78 | PLR ND 0.046 0.028 0.036 <0.022 <0.022 <0.022 <0.022 <0.022 <0.054 <0.022 0.049 | ND <0.022 ND ND <0.022 ND ND ND <0.022 ND ND ND ND ND 0.022 <0.022 <0.022 | PLR | ND N | | Analyte:
MDL
Units
Source: | | Chromium 1.2 UG/L PLE | Copper
2.0
UG/L
PLR | Copper
2.0
UG/L
PLE | Iron
37
UG/L
PLR | Iron
37
UG/L
PLE | Lead
2.0
UG/L
PLR | Lead
2.0
UG/L
PLE | | JANUARY -2009 FEBRUARY -2009 MARCH -2009 APRIL -2009 MAY -2009 JUNE -2009 JULY -2009 AUGUST -2009 SEPTEMBER -2009 OCTOBER -2009 DECEMBER -2009 | 7.4
8.3
5.3
8.0
8.4
6.4
6.5
5.5
7.1
7.5
7.3 | <1.2 2.6 1.9 1.8 3.8 1.6 <1.2 1.8 <1.2 1.9 2.1 1.7 | 87.7
111
103
107
126
115
121
101
105
137
83.6
90.2 | 22.2
33.8
30.1
14.5
19.0
17.1
20.8
18.9
17.4
17.9
14.5
16.7 | 5550
5390
5710
6520
6920
7330
7440
5810
5940
8200
7480
5830 | 2670
2260
2350
2170
3960
2570
2310
2460
2010
2260
2620
2270 | <pre></pre> | ND N | | AVERAGE | 7.0 | 1.6 | 107.3 | 20.2 | 6510 | 2493 | 1.9 | ND | ND= not detected NA= not analyzed NS= not sampled #### POINT LOMA WASTEWATER TREATMENT PLANT ANNUAL SEWAGE Trace Metals (Limits shown are the 6-Month Median Maximum) From: 01-JAN-2009 to: 31-DEC-2009 | Analyte: | Mercury | Mercury | Nickel | Nickel | Selenium | Selenium | Silver | Silver | |----------------|---------|---------|----------|--------|----------|----------|----------|--------| | MDL | .09 | .09 | .53 | .53 | .28 | .28 | .4 | .4 | | Units | UG/L | Source: | PLR | PLE | PLR | PLE | PLR | PLE | PLR | PLE | | | | | ======== | | ======= | | ======== | | | JANUARY -2009 | 0.10 | ND | 12.5 | 7.3 | 1.79 | 1.28 | 0.6 | ND | | FEBRUARY -2009 | ND | ND | 14.3 | 10.3 | 1.95 | 1.51 | 1.7 | ND | | MARCH -2009 | ND | ND | 7.6 | 6.1 | 2.30 | 1.63 | 1.1 | <0.4 | | APRIL -2009 | 0.14 | ND | 10.9 | 7.2 | 2.46 | 1.67 | 1.9 | <0.4 | | MAY -2009 | 0.13 | ND | 12.5 | 9.4 | 2.08 | 1.40 | 1.6 | <0.4 | | JUNE -2009 | 0.26 | ND | 9.9 | 6.9 | 1.90 | 1.24 | 1.1 | ND | | JULY -2009 | 0.25 | ND | 10.8 | 6.1 | 2.02 | 1.27 | 1.6 | ND | | AUGUST -2009 | 0.19 | ND | 8.9 | 6.0 | 1.87 | 1.28 | 0.8 | ND | | SEPTEMBER-2009 | 0.23 | ND | 13.4 | 8.4 | 1.89 | 1.18 | 1.3 | 0.4 | | OCTOBER -2009 | 0.09 | ND | 14.0 | 6.7 | 1.70 | 0.89 | 1.1 | ND | | NOVEMBER -2009 | <0.09 | ND | 12.3 | 7.3 | 1.48 | 1.15 | 0.8 | ND | | DECEMBER -2009 | 0.09 | <0.09 | 9.3 | 5.7 | 1.81 | 1.40 | 0.9 | ND | | AVERAGE | 0.12 | 0.00 | 11.4 | 7.3 | 1.94 | 1.33 | 1.2 | 0.03 | | 7.0.00 | 0.12 | 3.00 | 11.4 | 7.5 | 1.54 | 1.55 | 1.2 | 0.05 | | | | 11· | - 1 11. | | | |-----------|--------|----------|----------------|----------|------| | Analyte: | | Thallium | | Zinc | Zinc | | MDL | | 3.9 | 3.9 | 2.5 | 2.5 | | Units | | UG/L | UG/L | UG/L | UG/L | | Source: | | PLR | PLE | PLR | PLE | | ======= | | ======= | | ======== | | | JANUARY | -2009 | ND | ND | 139 | 33 | | FEBRUARY | -2009 | ND | ND | 151 | 33 | | MARCH | -2009 | ND | ND | 137 | 26 | | APRIL | -2009 | ND | ND | 151 | 22 | | MAY | -2009 | ND | ND | 166 | 22 | | JUNE | -2009 | ND | ND | 151 | 20 | | JULY | -2009 | ND | ND | 158 | 21 | | AUGUST | -2009 | ND | ND | 139 | 25 | | SEPTEMBER | R-2009 | ND | ND | 142 | 20 | | OCTOBER | -2009 | ND | ND | 211 | 23 | | NOVEMBER | -2009 | ND | ND | 120 | 19 | | DECEMBER | -2009 | ND | ND | 126 | 22 | | ======= | | ======= | | ======= | | | AVERAGE | | ND | ND | 149 | 24 | ND= not detected NA= not analyzed NS= not sampled #### POINT LOMA WASTEWATER TREATMENT PLANT ANNUAL SEWAGE Ammonia-Nitrogen and Total Cyanides (Limits shown are the 6-Month Median Maximum) From: 01-JAN-2009 to: 31-DEC-2009 | | Ammonia-N | Ammonia-N | Cyanides,Total | Cyanides,Total | |----------------|-------------|-----------|----------------|----------------| | | .3 MG/L | .3 MG/L | .002 MG/L | .002 MG/L | | | PLR | PLE | PLR | PLE | | Limit: | | 123 | | 0.200 | | ========== | =========== | | ============ | | | JANUARY -2009 | 29.7 | 29.3 | 0.002 | <0.002 | | FEBRUARY -2009 | 29.7 | 29.0 | ND | <0.002 | | MARCH -2009 | 31.6 | 30.5 | 0.002 | 0.003 | | APRIL -2009 | 33.8 | 33.2 | <0.002 | 0.002 | | MAY -2009 | 33.4 | 32.2 | <0.002 | 0.002 | | JUNE -2009 | 34.2 | 33.0 | <0.002 | 0.002 | | JULY -2009 | 33.6 | 32.5 | <0.002 | <0.002 | | AUGUST -2009 | 32.1 | 31.0 | <0.002 | <0.002 | | SEPTEMBER-2009 | 31.8 | 30.8 | <0.002 | 0.010 | | OCTOBER -2009 | 33.3 | 32.2 | ND | 0.002 | | NOVEMBER -2009 | 35.8 | 34.6 | <0.002 | 0.002 | | DECEMBER -2009 | 30.2 | 29.9 | 0.002 | 0.002 | | =========== | ========== | | =========== | | | Average: | 32.4 | 31.5 | 0.001 | 0.002 | Chlorine Residual, Total .03 MG/L PLE | | | FLL | |-----------|--------|---| | Limit: | | | | | | ========== | | JANUARY | -2009 | <0.03 | | FEBRUARY | -2009 | 0.06 | | MARCH | -2009 | ND | | APRIL | -2009 | ND | | MAY | -2009 | ND | | JUNE | -2009 | ND
 | JULY | -2009 | ND | | AUGUST | -2009 | <0.03 | | SEPTEMBER | R-2009 | ND | | OCTOBER | -2009 | ND | | NOVEMBER | -2009 | ND | | DECEMBER | -2009 | <0.03 | | ======= | ===== | ======================================= | | Average: | | 0.01 | ND= not detected NA= not analyzed NS= not sampled #### POINT LOMA WASTEWATER TREATMENT PLANT ANNUAL SEWAGE Radioactivity From: 01-JAN-2009 To: 31-DEC-2009 | Source | Month | | Gross Alpha Radiation | Gross Beta Radiation | |---------|-----------|--------|---|---| | ====== | ======= | | ======================================= | ======================================= | | PLR | JANUARY | -2009 | 3.9±2.9 | 29.9±7.8 | | PLR | FEBRUARY | -2009 | 3.4±2.8 | 29.9±6.2 | | PLR | MARCH | -2009 | 5.8±3.6 | 28.3±6.1 | | PLR | APRIL | -2009 | 5.9±3.6 | 28.8±6.8 | | PLR | MAY | -2009 | 0.6±4.4 | 30.7±7.9 | | PLR | JUNE | -2009 | 2.7±3.1 | 29.1±7.2 | | PLR | JULY | -2009 | 4.2±4.5 | 31.6±8.0 | | PLR | AUGUST | -2009 | 2.4±3.6 | 33.5±7.8 | | PLR | SEPTEMBER | R-2009 | 4.4±3.6 | 31.9±8.2 | | PLR | OCTOBER | -2009 | 2.8±3.4 | 32.7±8.0 | | PLR | NOVEMBER | -2009 | 2.9±3.6 | 32.1±7.7 | | PLR | DECEMBER | -2009 | 4.0±3.6 | 39.2±10.5 | | ====== | ======= | | ======================================= | ======================================= | | AVERAGE | | | 3.6±3.5 | 31.5±7.7 | | Source | Month | | Gross Alpha Radiation | Gross Beta Radiation | |---------|-----------|--------|---|---| | ====== | ======= | | ======================================= | ======================================= | | PLE | JANUARY | -2009 | 1.0±1.6 | 27.0±5.7 | | PLE | FEBRUARY | -2009 | 4.8±3.0 | 29.5±6.4 | | PLE | MARCH | -2009 | 5.1±3.3 | 28.7±6.2 | | PLE | APRIL | -2009 | 2.8±3.2 | 32.6±7.1 | | PLE | MAY | -2009 | 0.0±3.3 | 32.3±6.6 | | PLE | JUNE | -2009 | 2.6±3.7 | 25.9±6.1 | | PLE | JULY | -2009 | 3.3±3.4 | 30.2±6.7 | | PLE | AUGUST | -2009 | 4.0±3.6 | 34.5±7.4 | | PLE | SEPTEMBER | R-2009 | 3.7±4.0 | 37.0±8.8 | | PLE | OCTOBER | -2009 | 1.3±2.5 | 34.8±7.9 | | PLE | NOVEMBER | -2009 | 0.6±3.1 | 36.1±7.8 | | PLE | DECEMBER | -2009 | 6.4±4.1 | 37.5±11.0 | | ====== | ======= | ===== | ======================================= | ======================================= | | AVERAGE | | | 3.0±3.2 | 32.2±7.3 | ND= not detected NA= not analyzed NS= not sampled Units in picocuries/liter (pCi/L) #### POINT LOMA WASTEWATER TREATMENT PLANT SEWAGE ANNUAL - Chlorinated Pesticide Analysis #### From 01-JAN-2009 To 31-DEC-2009 #### Effluent | | ===== | |---|----------| | Aldrin 7 NG/L ND | ND | | Dieldrin 3 NG/L ND | ND | | BHC, Alpha isomer 7 NG/L ND | ND | | BHC, Beta isomer 3 NG/L ND | ND | | BHC, Gamma isomer 5 NG/L ND | 0 | | BHC, Delta isomer 3 NG/L ND | ND | | p,p-DDD 3 NG/L ND | ND | | p,p-DDE 4 NG/L ND | ND | | p,p-DDT 8 NG/L ND | ND | | o,p-DDD 4 NG/L ND | ND | | o,p-DDE 5 NG/L ND <5 ND | 0 | | o,p-DDT 3 NG/L ND | ND | | Heptachlor 8 NG/L ND | ND | | Heptachlor epoxide 4 NG/L $$ ND | ND | | Alpha (cis) Chlordane 3 NG/L ND | ND | | Gamma (trans) Chlordane 4 NG/L ND | ND | | Alpha Chlordene NG/L NA | NA | | Gamma Chlordene | NA | | Oxychlordane 6 NG/L ND | ND | | Trans Nonachlor 5 NG/L ND | ND | | Cis Nonachlor 3 NG/L ND | ND | | Alpha Endosulfan | ND | | Beta Endosulfan 2 NG/L ND ND ND <2 ND | 0 | | Endosulfan Sulfate 6 NG/L ND | ND | | Endrin 2 NG/L ND | ND | | Endrin aldehyde 9 NG/L ND | ND | | Mirex 10 NG/L ND | ND | | Methoxychlor 10 NG/L ND | ND | | Toxaphene 330 NG/L ND | ND | | PCB 1016 4000 NG/L ND | ND | | PCB 1221 4000 NG/L ND | ND | | PCB 1232 360 NG/L ND | ND | | PCB 1242 4000 NG/L ND | ND | | PCB 1248 2000 NG/L ND | ND | | PCB 1254 2000 NG/L ND | ND
ND | | PCB 1260 2000 NG/L ND | ND
ND | | PCD 1202 930 NG/L ND | ND | | Aldrin + Dieldrin 7 NG/L 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0 | | Hexachlorocyclohexanes 7 NG/L 0 0 0 0 0 0 0 0 0 0 0 | 0 | | DDT and derivatives 8 NG/L 0 0 0 0 0 0 0 0 0 0 0 0 | 0 | | Chlordane + related cmpds. 6 NG/L 0 0 0 0 0 0 0 0 0 0 0 0 | 0 | | Polychlorinated biphenyls 4000 NG/L 0 0 0 0 0 0 0 0 0 0 0 0 | 0 | | Endosulfans 6 NG/L 0 0 0 0 0 0 0 0 0 0 0 0 | 0 | | ======================================= | ===== | | Heptachlors 8 NG/L 0 0 0 0 0 0 0 0 0 0 0 0 | 0 | | Chlorinated Hydrocarbons 4000 NG/L 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0 | ND= not detected NA= not analyzed #### POINT LOMA WASTEWATER TREATMENT PLANT SEWAGE ANNUAL - Chlorinated Pesticide Analysis #### From 01-JAN-2009 To 31-DEC-2009 #### Influent | Aldrin 7 NG/L ND | ND
ND | |---|----------| | AIGITI TO NOTE NO | | | Dieldrin 3 NG/L ND | | | BHC, Alpha isomer 7 NG/L ND | ND | | BHC, Beta isomer 3 NG/L ND | ND | | BHC, Gamma isomer 5 NG/L ND | 0 | | BHC, Delta isomer 3 NG/L ND | ND | | p,p-DDD 3 NG/L ND | ND | | p,p-DDE 4 NG/L ND 13 ND 6 14 ND ND ND ND <4 ND ND | 3 | | p,p-DDT 8 NG/L ND | ND | | o,p-DDD 4 NG/L ND | ND | | o,p-DDE 5 NG/L ND | ND | | o,p-DDT 3 NG/L ND | ND | | Heptachlor 8 NG/L ND | ND | | Heptachlor epoxide 4 NG/L ND | ND | | Alpha (cis) Chlordane 3 NG/L ND | ND | | Gamma (trans) Chlordane 4 NG/L ND | ND | | Alpha Chlordene | NA | | Gamma Chlordene | NA | | Oxychlordane 6 NG/L ND | ND | | Trans Nonachlor 5 NG/L ND | ND | | Cis Nonachlor 3 NG/L ND | ND | | Alpha Endosulfan 4 NG/L ND | ND | | Beta Endosulfan 2 NG/L ND ND ND 2 ND ND ND ND ND ND ND ND | 0 | | Endosulfan Sulfate 6 NG/L ND | ND | | Endrin 2 NG/L ND | ND | | Endrin aldehyde 9 NG/L ND | ND | | Mirex 10 NG/L ND | ND | | Methoxychlor 10 NG/L ND | ND | | Toxaphene 330 NG/L ND | ND | | PCB 1016 4000 NG/L ND | ND | | PCB 1221 | ND | | PCB 1232 360 NG/L ND | ND | | PCB 1242 4000 NG/L ND | ND | | PCB 1248 2000 NG/L ND | ND | | PCB 1254 2000 NG/L ND | ND | | PCB 1260 2000 NG/L ND | ND | | PCB 1262 930 NG/L ND | ND | | | ==== | | Aldrin + Dieldrin 7 NG/L 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0
0 | | · · · · · · · · · · · · · · · · · · · | | | DDT and derivatives $8 \ NG/L \ 0 \ 13 \ 0 \ 6 \ 14 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ $ | 3
0 | | , | 0 | | Polychlorinated biphenyls 4000 NG/L 0 | 0 | | | ==== | | Heptachlors 8 NG/L 0 0 0 0 0 0 0 0 0 0 0 | 0 | | Chlorinated Hydrocarbons 4000 NG/L 0 13 0 8 14 0 0 0 0 0 0 0 | 3 | ND= not detected NA= not analyzed #### POINT LOMA WASTEWATER TREATMENT PLANT / METROBIOSOLIDS CENTER ANNUAL SUMMARY #### Organophosphorus Pesticides #### From 01-JAN-2009 To 31-DEC-2009 | | | | PLE | PLE | PLR
05-MAY-2009 | PLR | |--|------|-------|----------|----------|--------------------|-----------| | Analyte | MDI | Units | P468671 | P490472 | P468676 | P490477 | | ====================================== | | ===== | 1400071 | 1 430472 | | 1 4304/ / | | Demeton O | . 15 | UG/L | ND | ND | ND | ND | | Demeton S | | UG/L | ND. | ND. | ND. | ND | | Diazinon | | UG/L | ND | ND. | ND | ND | | Guthion | | UG/L | ND | ND | ND | ND | | Malathion | | UG/L | 0.3 | ND | 0.2 | ND | |
Parathion | .03 | UG/L | ND | ND | ND | ND | | | === | ===== | ======== | ======== | ======== | ======== | | Thiophosphorus Pesticides | .15 | UG/L | 0.3 | 0.0 | 0.2 | 0.0 | | Demeton -0, -S | .15 | UG/L | 0.0 | 0.0 | 0.0 | 0.0 | | | === | ===== | ======== | | | ======== | | Total Organophosphorus Pesticides | .3 | UG/L | 0.3 | 0.0 | 0.2 | 0.0 | | | === | ===== | | | ======== | ======== | | Bolstar | | UG/L | ND | ND | ND | ND | | Chlorpyrifos | | UG/L | ND | ND | ND | ND | | Coumaphos | .15 | UG/L | ND | ND | ND | ND | | Dibrom | | UG/L | ND | ND | ND | ND | | Dichlofenthion | | UG/L | ND | ND | ND | ND | | Dichlorvos | | UG/L | ND | ND | ND | ND | | Dimethoate | | UG/L | ND | ND | ND | ND | | Disulfoton | | UG/L | ND | ND | ND | ND | | EPN | | UG/L | ND | ND | ND | ND | | Ethoprop | | UG/L | ND | ND | ND | ND | | Fensulfothion | | UG/L | ND | ND | ND | ND | | Merphos | | UG/L | ND | ND | ND | ND | | Mevinphos, e isomer | | UG/L | ND | ND | ND | ND | | Mevinphos, z isomer | | UG/L | ND | ND | ND | ND | | Phorate | | UG/L | ND | ND | ND | ND | | Ronnel | | UG/L | ND | ND | ND | ND | | Stirophos | | UG/L | ND | ND | ND | ND | | Sulfotepp | | UG/L | ND | ND | ND | ND | | Tokuthion | | UG/L | ND | ND | ND | ND | | Trichloronate | . 64 | UG/L | ND | ND | ND | ND | #### POINT LOMA WASTEWATER TREATMENT PLANT ANNUAL SEWAGE MONTHLY - Tributyl Tin analysis ### From 01-JAN-2009 To 31-DEC-2009 #### Effluent | | | | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | OCT | NOV | DEC | | |--------------|-----|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|---------| | Analyte | MDL | Units | | | | | | | | | | | | | Average | | ======== | === | ===== | ===== | ===== | ===== | ===== | ===== | ===== | ===== | ===== | ===== | ===== | ===== | ===== | ===== | | Dibutyltin | 7 | UG/L | ND | Monobutyltin | 16 | UG/L | ND | Tributyltin | 2 | UG/L | ND #### Influent | | JAN FE | B MAR AF | R MAY | JUN | JUL | AUG | SEP | ОСТ | NOV | DEC | | |---|--------|----------|---------|-------|-------|-------|-------|-------|-------|-------|---------| | Analyte MDL Units | | | | | | | | | | | Average | | ======================================= | | | = ===== | ===== | ===== | ===== | ===== | ===== | ===== | ===== | ===== | | Dibutyltin 7 UG/L | ND NE | ND N | ID ND | | Monobutyltin 16 UG/L | ND NE |) ND M | ID ND | | Tributyltin 2 UG/L | ND NE |) ND N | ID ND | ND=not detected ## POINT LOMA WASTEWATER TREATMENT PLANT SEWAGE ANNUAL - Acid Extractables From 01-JAN-2009 to 31-DEC-2009 | Analyte | MDL | Units | PLE
JAN
Avg | PLE
FEB
Avg | PLE
MAR
Avg | PLE
APR
Avg | PLE
MAY
Avg | PLE
JUN
Avg | PLE
JUL
Avg | PLE
AUG
Avg | PLE
SEP
Avg | PLE
OCT
Avg | PLE
NOV
Avg | PLE
DEC
Avg | Average | |---|--|---|---|---|---|---|---|---|---|---|---|---|---|---|--| | 2-chlorophenol | 1 22 | =====
UG/L | =====
ND ====
ND | | 4-chloro-3-methylphenol | | UG/L | ND
ND | ND | 2,4-dichlorophenol | | UG/L | ND | 2,4-dimethylphenol | | UG/L | ND | 2,4-dinitrophenol | 2.16 | UG/L | ND | 2-methyl-4,6-dinitrophenol | 1.52 | UG/L | ND | 2-nitrophenol | | UG/L | ND | 4-nitrophenol | | UG/L | ND | Pentachlorophenol | | UG/L | ND | ND
12.2 | ND
1 F 1 | ND
1E O | ND
15.6 | ND | ND
1 F | ND | ND
12.0 | ND
1 F O | ND
1 F 1 | ND | ND | | Phenol 2,4,6-trichlorophenol | | UG/L
UG/L | 14.2
ND | 13.2
ND | 15.1
ND | 15.9
ND | 15.6
ND | 13.1
ND | 15.5
ND | 14.4
ND | 12.0
ND | 15.8
ND | 15.1
ND | 12.7
ND | 14.4
ND | | ====================================== | | , | ===== | | | ===== | | ==== | | | | | ===== | | | | Total Chlorinated Phenols | | UG/L
===== | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Total Non-Chlorinated Phenols | | UG/L | 14.2 | 13.2 | 15.1
===== | 15.9
===== | 15.6 | 13.1 | | 14.4 | 12.0 | 15.8
===== | 15.1
===== | 12.7 | 14.4 | | Phenols | | UG/L | 14.2 | | 15.1 | | 15.6 | | 15.5 | 14.4 | 12.0 | 15.8 | 15.1 | | 14.4 | | Additional analytes determined; | ===- | | ===== | | | | | | | | | | | | | | 2-methylphenol | | UG/L | ND | 3-methylphenol(4-MP is unresolved) | | UG/L | ND | ND | NA ND | | 4-methylphenol(3-MP is unresolved) | 2.11 | UG/L | 41.2 | 30.2 | 46.0 | 35.0 | 32.9 | 27.5 | 32.6 | 28.8 | 15.8 | 30.2 | 31.3 | 35.7 | 32.3 | | 2,4,5-trichlorophenol | 1.66 | UG/L | ND | | | | | | | | | | | | | | | | | | Analyte | MDL | Units | PLR
JAN
Avg |
PLR
FEB
Avg | PLR
MAR
Avg | PLR
APR
Avg | PLR
MAY
Avg | PLR
JUN
Avg | PLR
JUL
Avg | PLR
AUG
Avg | PLR
SEP
Avg | PLR
OCT
Avg | PLR
NOV
Avg | PLR
DEC
Avg | Average | | Analyte | | Units | JAN
Avg | | | | | | | | | | | DEC | Average | | 2-chlorophenol | 1.32 | =====
UG/L | JAN
Avg
=====
ND | FEB
Avg
=====
ND | MAR
Avg
=====
ND | APR
Avg
=====
ND | MAY
Avg
=====
ND | JUN
Avg
====
ND | JUL
Avg
====
ND | AUG
Avg
=====
ND | SEP
Avg
=====
ND | OCT
Avg
=====
ND | NOV
Avg
=====
ND | DEC
Avg
=====
ND | ND | | 2-chlorophenol
4-chloro-3-methylphenol | 1.32
1.67 | =====
UG/L
UG/L | JAN
Avg
====
ND
ND | FEB
Avg
=====
ND
ND | MAR
Avg
=====
ND
ND | APR
Avg
=====
ND
ND | MAY
Avg
=====
ND
ND | JUN
Avg
====
ND
ND | JUL
Avg
=====
ND
ND | AUG
Avg
=====
ND
ND | SEP
Avg
=====
ND
ND | OCT
Avg
=====
ND
ND | NOV
Avg
=====
ND
ND | DEC
Avg
=====
ND
ND | ND
ND | | 2-chlorophenol 4-chloro-3-methylphenol 2,4-dichlorophenol | 1.32
1.67
1.01 | =====
UG/L
UG/L
UG/L | JAN
Avg
====
ND
ND
ND | FEB
Avg
=====
ND
ND
ND | MAR
Avg
=====
ND
ND
ND | APR
Avg
=====
ND
ND
ND | MAY
Avg
=====
ND
ND
ND | JUN
Avg
=====
ND
ND
ND | JUL
Avg
====
ND
ND
ND | AUG
Avg
=====
ND
ND
ND | SEP
Avg
=====
ND
ND
ND | OCT
Avg
=====
ND
ND
ND | NOV
Avg
=====
ND
ND
ND | DEC
Avg
=====
ND
ND
ND | ND
ND
ND | | 2-chlorophenol 4-chloro-3-methylphenol 2,4-dichlorophenol 2,4-dimethylphenol | 1.32
1.67
1.01
2.01 | =====
UG/L
UG/L
UG/L
UG/L | JAN
Avg
=====
ND
ND
ND
ND | FEB
Avg
=====
ND
ND
ND
ND | MAR
Avg
=====
ND
ND
ND
ND | APR Avg ==== ND ND ND ND ND | MAY
Avg
====
ND
ND
ND
ND | JUN
Avg
=====
ND
ND
ND
ND | JUL
Avg
====
ND
ND
ND
ND | AUG
Avg
=====
ND
ND
ND
ND | SEP
Avg
=====
ND
ND
ND
ND | OCT Avg ===== ND ND ND ND ND | NOV Avg ==== ND ND ND ND ND | DEC
Avg
=====
ND
ND
ND
ND | ND
ND
ND
ND
ND | | 2-chlorophenol 4-chloro-3-methylphenol 2,4-dichlorophenol 2,4-dimethylphenol 2,4-dinitrophenol | 1.32
1.67
1.01
2.01
2.16 | =====
UG/L
UG/L
UG/L | JAN
Avg
====
ND
ND
ND | FEB
Avg
=====
ND
ND
ND | MAR
Avg
=====
ND
ND
ND | APR
Avg
=====
ND
ND
ND | MAY
Avg
=====
ND
ND
ND | JUN
Avg
=====
ND
ND
ND | JUL
Avg
====
ND
ND
ND | AUG
Avg
=====
ND
ND
ND | SEP
Avg
=====
ND
ND
ND | OCT
Avg
=====
ND
ND
ND | NOV
Avg
=====
ND
ND
ND | DEC
Avg
=====
ND
ND
ND | ND
ND
ND | | 2-chlorophenol 4-chloro-3-methylphenol 2,4-dichlorophenol 2,4-dimethylphenol | 1.32
1.67
1.01
2.01
2.16
1.52 | =====
UG/L
UG/L
UG/L
UG/L
UG/L | JAN Avg ===== ND ND ND ND ND ND | FEB
Avg
=====
ND
ND
ND
ND
ND | MAR
Avg
=====
ND
ND
ND
ND
ND | APR Avg ND ND ND ND ND ND ND | MAY Avg ===== ND ND ND ND ND ND ND | JUN
Avg
=====
ND
ND
ND
ND
ND | JUL
Avg
=====
ND
ND
ND
ND
ND | AUG
Avg
=====
ND
ND
ND
ND
ND | SEP
Avg
=====
ND
ND
ND
ND
ND | OCT Avg ===== ND ND ND ND ND ND ND | NOV
Avg
=====
ND
ND
ND
ND
ND | DEC
Avg
=====
ND
ND
ND
ND
ND | ND
ND
ND
ND
ND
ND | | 2-chlorophenol 4-chloro-3-methylphenol 2,4-dichlorophenol 2,4-dimethylphenol 2,4-dinitrophenol 2,-dinitrophenol 2-methyl-4,6-dinitrophenol | 1.32
1.67
1.01
2.01
2.16
1.52
1.55 | =====
UG/L
UG/L
UG/L
UG/L
UG/L
UG/L | JAN Avg ===== ND | FEB Avg ===== ND | MAR Avg ===== ND | APR Avg ND | MAY Avg Avg ND | JUN Avg ==== ND | JUL Avg ==== ND | AUG Avg ==== ND | SEP
Avg
====
ND
ND
ND
ND
ND
ND
ND
ND | OCT Avg ===== ND | NOV Avg ==== ND | DEC Avg ===== ND | ND N | | 2-chlorophenol 4-chloro-3-methylphenol 2,4-dichlorophenol 2,4-dimethylphenol 2,4-dinitrophenol 2-methyl-4,6-dinitrophenol 2-nitrophenol 4-nitrophenol Pentachlorophenol | 1.32
1.67
1.01
2.01
2.16
1.52
1.55
1.14 | ===== UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L | JAN Avg ===== ND | FEB
Avg
=====
ND
ND
ND
ND
ND
ND
ND
ND
ND | MAR Avg ===== ND | APR Avg ==== ND | MAY Avg Avg ND | Avg Avg ND | Avg ==== ND | AUG Avg ==== ND | SEP
Avg
====
ND
ND
ND
ND
ND
ND
ND
ND
ND | OCT Avg ===== ND | NOV Avg ===== ND | DEC Avg ==== ND | ND N | | 2-chlorophenol 4-chloro-3-methylphenol 2,4-dichlorophenol 2,4-dimethylphenol 2,4-dinitrophenol 2-methyl-4,6-dinitrophenol 2-nitrophenol 4-nitrophenol Pentachlorophenol Phenol | 1.32
1.67
1.01
2.01
2.16
1.52
1.55
1.14
1.12 | ===== UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L | JAN Avg ===== ND | FEB
Avg
=====
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND | MAR Avg ==== ND | APR Avg ===== ND | MAY Avg Avg ND | JUN Avg THE STATE OF | JUL Avg ==== ND | AUG
Avg
=====
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND | SEP Avg ==== ND | OCT Avg ===== ND | NOV Avg ===== ND | DEC Avg ==== ND | ND N | | 2-chlorophenol 4-chloro-3-methylphenol 2,4-dichlorophenol 2,4-dimethylphenol 2,4-dinitrophenol 2-methyl-4,6-dinitrophenol 2-nitrophenol 4-nitrophenol Pentachlorophenol Phenol 2,4,6-trichlorophenol | 1.32
1.67
1.01
2.01
2.16
1.52
1.55
1.14
1.12
1.76 | ===== UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L | JAN Avg THE STATE OF | FEB Avg ===== ND | MAR Avg ===== ND | APR Avg ND | MAY Avg ===== ND | JUN Avg ===== ND | JUL Avg ===== ND | AUG Avg ===== ND | SEP Avg ===== ND | OCT Avg ===== ND | NOV Avg Avg ND | DEC Avg ==== ND | ND N | | 2-chlorophenol 4-chloro-3-methylphenol 2,4-dichlorophenol 2,4-dimethylphenol 2,4-dinitrophenol 2-methyl-4,6-dinitrophenol 2-nitrophenol 4-nitrophenol Pentachlorophenol Phenol 2,4,6-trichlorophenol ==================================== | ====
1.32
1.67
1.01
2.01
2.16
1.52
1.55
1.14
1.12
1.76
1.65
==== | ===== UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L | JAN Avg ===== ND | FEB Avg ===== ND | MAR
Avg
=====
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND | APR Avg ===== ND | MAY Avg ===== ND | JUN Avg ===== ND | JUL
Avg
=====
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND | AUG
Avg
=====
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND | SEP
Avg
=====
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND | OCT
Avg
=====
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND | NOV Avg ===== ND | DEC Avg ===== ND | ===== ND | | 2-chlorophenol 4-chloro-3-methylphenol 2,4-dichlorophenol 2,4-dimethylphenol 2,4-dinitrophenol 2-methyl-4,6-dinitrophenol 2-nitrophenol 4-nitrophenol Pentachlorophenol Phenol 2,4,6-trichlorophenol Total Chlorinated Phenols | 1.32
1.67
1.01
2.01
2.16
1.52
1.55
1.14
1.12
1.76
1.65
====
1.67 | ===== UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L | JAN Avg | FEB Avg ===== ND | MAR Avg ===== ND | APR Avg ===== ND 17.0 ND 17.0 E==== 17.0 | MAY Avg ===== ND | JUN Avg ===== ND | JUL Avg ===== ND | AUG Avg ===== ND | SEP Avg ===== ND | OCT Avg ===== ND | NOV Avg ===== ND | DEC Avg ===== ND 17.1 ND ===== 0.0 ==== 17.1 | ===== ND | | 2-chlorophenol 4-chloro-3-methylphenol 2,4-dichlorophenol 2,4-dimethylphenol 2,4-dinitrophenol 2-methyl-4,6-dinitrophenol 2-nitrophenol 4-nitrophenol Pentachlorophenol Phenol 2,4,6-trichlorophenol ==================================== | ====
1.32
1.67
1.01
2.01
2.16
1.52
1.55
1.14
1.12
1.76
1.65
====
1.67
==== | ===== UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L | JAN Avg | FEB Avg ===== ND | MAR Avg ===== ND 16.9 ND ===== 0.0 ===== 16.9 | APR Avg ===== ND 17.0 ND ===== 17.0 ===== | MAY Avg ===== ND 18.3 ND ===== 0.0 ===== 18.3 ===== | JUN Avg ===== ND 19.0 ND 19.0 ==== 0.0 ===== 19.0 | JUL Avg ===== ND | AUG Avg ===== ND | SEP Avg ===== ND | OCT AVg ===== ND OF EFFE 0.0 ===== 22.4 ===== | NOV Avg ===== ND | DEC Avg ===== ND 17.1 ND ===== 0.0 ===== 17.1 | ===== ND ===== 0.0 ===== 18.8 | | 2-chlorophenol 4-chloro-3-methylphenol 2,4-dichlorophenol 2,4-dimethylphenol 2,4-dinitrophenol 2-methyl-4,6-dinitrophenol 2-nitrophenol 4-nitrophenol Pentachlorophenol Phenol 2,4,6-trichlorophenol | 1.32
1.67
1.01
2.01
2.16
1.52
1.55
1.14
1.12
1.76
1.65
====
1.67
====
2.16 | ===== UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L | JAN Avg | FEB Avg ===== ND 16.2 ND ==== 0.0 ==== 16.2 | MAR AVg ===== ND 16.9 ND ===== 16.9 | APR AVg ===== ND 17.0 ND ===== 17.0 | MAY Avg ===== ND 18.3 ND ===== 18.3 ==== 18.3 | JUN Avg ===== ND 19.0 ND ===== 19.0 | JUL Avg ===== ND 20.5 ND ===== 20.5 | AUG Avg ===== ND 21.2 ND ===== 21.2 | SEP Avg ===== ND | OCT Avg ===== ND 22.4 ND ==== 0.0 ===== 22.4 | NOV Avg ===== ND | DEC Avg ===== ND 17.1 ND ===== 0.0 ===== 17.1 | ND N | | 2-chlorophenol 4-chloro-3-methylphenol 2,4-dichlorophenol 2,4-dimethylphenol 2,4-dinitrophenol 2-methyl-4,6-dinitrophenol 2-nitrophenol 4-nitrophenol Pentachlorophenol Phenol 2,4,6-trichlorophenol | 1.32
1.67
1.01
2.01
2.16
1.52
1.55
1.14
1.12
1.76
1.65
====
2.16
====
2.16 | UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L | JAN Avg | FEB Avg ===== ND 16.2 ND =====
16.2 ===== 16.2 | MAR AVg ===== ND 16.9 ND ===== 16.9 ===== 16.9 | APR AVg ===== ND ND ND ND ND ND ND ND ND 17.0 ND ===== 17.0 ===== 17.0 | MAY Avg ===== ND 18.3 ND ===== 18.3 ===== 18.3 | JUN Avg ===== ND 19.0 ND ===== 19.0 | JUL Avg ===== ND 20.5 ND ===== 20.5 | AUG Avg ===== ND 21.2 ND ===== 21.2 ===== 21.2 | SEP Avg ===== ND 20.2 ND ===== 20.2 ===== 20.2 | OCT Avg ===== ND 22.4 ND ===== 22.4 | NOV Avg ===== ND | DEC Avg ===== ND ND ND ND ND ND ND ND ND 17.1 ND ===== 17.1 ===== 17.1 | ND N | | 2-chlorophenol 4-chloro-3-methylphenol 2,4-dichlorophenol 2,4-dimethylphenol 2,4-dinitrophenol 2-methyl-4,6-dinitrophenol 2-nitrophenol 4-nitrophenol Pentachlorophenol Phenol 2,4,6-trichlorophenol | 1.32
1.67
1.01
2.01
2.16
1.52
1.55
1.14
1.12
1.76
1.65
====
2.16
====
2.16 | ===== UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L | JAN Avg | FEB Avg ===== ND 16.2 ND ==== 0.0 ==== 16.2 | MAR AVg ===== ND 16.9 ND ===== 16.9 | APR AVg ===== ND 17.0 ND ===== 17.0 | MAY Avg ===== ND 18.3 ND ===== 18.3 ==== 18.3 | JUN Avg ===== ND 19.0 ND ===== 19.0 | JUL Avg ===== ND 20.5 ND ===== 20.5 | AUG Avg ===== ND 21.2 ND ===== 21.2 | SEP Avg ===== ND | OCT Avg ===== ND 22.4 ND ==== 0.0 ===== 22.4 | NOV Avg ===== ND | DEC Avg ===== ND 17.1 ND ===== 0.0 ===== 17.1 | ND N | | 2-chlorophenol 4-chloro-3-methylphenol 2,4-dichlorophenol 2,4-dimethylphenol 2,4-dinitrophenol 2-methyl-4,6-dinitrophenol 2-nitrophenol 4-nitrophenol Pentachlorophenol Phenol 2,4,6-trichlorophenol ==================================== | ====
1.32
1.67
1.01
2.01
2.16
1.52
1.55
1.14
1.12
1.76
1.65
====
2.16
====
2.16 | ===== UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L | JAN Avg ND ND ND ND ND ND ND ND ND 15.7 ND 15.7 15.7 ND NA ND NA NA NA | FEB Avg ===== ND 16.2 ND ===== 16.2 ==== ND | MAR Avg ===== ND 16.9 ND ===== 16.9 ==== ND | APR Avg ===== ND ND ND ND ND ND ND ND ND 17.0 ND ===== 17.0 ==== 17.0 | MAY Avg ===== ND 18.3 ND ===== 18.3 ==== 18.3 | JUN Avg ===== ND ND ND ND ND ND ND ND ND 19.0 ND ===== 19.0 ==== 19.0 | JUL Avg ===== ND 20.5 ND ===== 20.5 ==== 20.5 | AUG Avg ===== ND 21.2 ND ===== 21.2 ===== ND | SEP Avg ===== ND 20.2 ND ===== 20.2 ==== 20.2 | OCT Avg ===== ND 22.4 ND ===== 22.4 ===== 22.4 | NOV Avg ===== ND 20.7 ND ===== 20.7 ===== 20.7 | DEC Avg ===== ND ND ND ND ND ND ND ND ND 17.1 ND ===== 17.1 ==== 17.1 ==== ND | ===== ND 18.8 ND ===== 0.0 ===== 18.8 ===== 18.8 | # POINT LOMA WASTEWATER TREATMENT PLANT SEWAGE ANNUAL Priority Pollutants Base/Neutrals From 01-JAN-2009 to 31-DEC-2009 | | | | PLE
JAN | PLE
FEB | PLE
MAR | PLE
APR | PLE
MAY | PLE
JUN | PLE
JUL | PLE
AUG | PLE
SEP | PLE
OCT | PLE
NOV | PLE
DEC | PLE | |--|------|---------------|------------|------------|------------|------------|------------|-------------|------------|------------|------------|------------|------------|------------|----------| | Analyte | | Units | Avg _ | Average | | Acenaphthene | 1.8 | =====
UG/L | ====
ND | ND | ND | ND | ND | =====
ND | ND | ====
ND | ND | ND | ====
ND | ND | ND | | Acenaphthylene | | UG/L | ND | Anthracene | | UG/L | ND | Benzidine | 1.52 | UG/L | ND | Benzo[A]anthracene | 1.1 | UG/L | ND | 3,4-benzo(B)fluoranthene | 1.35 | UG/L | ND | Benzo[K]fluoranthene | 1.49 | UG/L | ND | Benzo[A]pyrene | 1.25 | UG/L | ND | Benzo[G,H,I]perylene | 1.09 | UG/L | ND | 4-bromophenyl phenyl ether | 1.4 | UG/L | ND | bis(2-chloroethoxy)methane | | UG/L | ND | bis(2-chloroethyl) ether | | UG/L | ND | Bis-(2-chloroisopropyl) ether | | UG/L | ND | 4-chlorophenyl phenyl ether | | UG/L | ND | 2-chloronaphthalene | | UG/L | ND | Chrysene | | UG/L | ND | Dibenzo(A,H)anthracene | | UG/L | ND | Butyl benzyl phthalate | | UG/L
UG/L | ND | ND | ND
ND | ND | ND
ND | ND
ND | ND | ND | ND
ND | ND
ND | ND
ND | ND
ND | ND
ND | | <pre>Di-n-butyl phthalate Bis-(2-ethylhexyl) phthalate</pre> | | UG/L | ND
ND | Diethyl phthalate | | UG/L | ND
ND | 7.1 | 7.1 | 6.8 | 8.8 | 5.7 | 8.2 | 7.9 | 7.2 | 8.3 | 7.6 | 6.3 | 6.8 | | Dimethyl phthalate | | UG/L | ND
ND | /.I
ND | ND | Di-n-octyl phthalate | 1 | UG/L | ND | 3,3-dichlorobenzidine | | UG/L | ND | 2,4-dinitrotoluene | | UG/L | ND | 2,6-dinitrotoluene | | UG/L | ND | 1,2-diphenylhydrazine | | UG/L | ND | Fluoranthene | 1.33 | UG/L | ND | Fluorene | 1.61 | UG/L | ND | Hexachlorobenzene | 1.48 | UG/L | ND | Hexachlorobutadiene | 1.64 | UG/L | ND | Hexachlorocyclopentadiene | 1.25 | UG/L | ND | Hexachloroethane | | UG/L | ND | Indeno(1,2,3-CD)pyrene | | UG/L | ND | Isophorone | | UG/L | ND | Naphthalene | | UG/L | ND | Nitrobenzene | 1.6 | UG/L | ND | N-nitrosodimethylamine | | UG/L | ND | N-nitrosodi-n-propylamine | | UG/L
UG/L | ND
ND | N-nitrosodiphenylamine
Phenanthrene | | UG/L | ND
ND ND | ND
ND | ND
ND | ND
ND | | Pyrene | | UG/L | ND
ND | ND | 1,2,4-trichlorobenzene | | UG/L | ND | ======================================= | | | ===== | | | | | | | | | | | | | | Polynuc. Aromatic Hydrocarbons | 1.77 | UG/L | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Base/Neutral Compounds | | UG/L | 0.0 | 7.1 | 7.1 | 6.8 | 8.8 | 5.7 | 8.2 | 7.9 | 7.2 | 8.3 | 7.6 | 6.3 | 6.8 | | Additional analytes determine | | | | | | | | | | | | | | | | | Benzo[e]pyrene | | UG/L | ND |
ND |
ND |
ND |
ND | ND |
ND | ND |
ND |
ND | ND | ND | ND | | Biphenyl | | UG/L | ND | 2,6-dimethylnaphthalene | | UG/L | ND | 1-methylnaphthalene | | UG/L | ND | 1-methylphenanthrene | | UG/L | ND | 2-methylnaphthalene | | UG/L | ND | 2,3,5-trimethylnaphthalene | 2.18 | UG/L | ND | Perylene | 1.41 | UG/L | ND | | | | | | | | | | | | | | | | | #### POINT LOMA WASTEWATER TREATMENT PLANT SEWAGE ANNUAL Priority Pollutants Base/Neutrals From 01-JAN-2009 to 31-DEC-2009 | | | | PLR
JAN | PLR
FEB | PLR
MAR | PLR
APR | PLR
MAY | PLR
JUN | PLR
JUL | PLR
AUG | PLR
SEP | PLR
OCT | PLR
NOV | PLR
DEC | PLR | |--|------|---------------|------------|------------|-------------|------------|------------|------------|------------|------------|------------|-------------|------------|------------|----------| | Analyte | MDL | Units | Avg _ | Average | | Acenaphthene | 1.8 | =====
UG/L | ====
ND | ND | =====
ND | ND | ND | ND | ====
ND | ND | ND | =====
ND | ND | ND | ND | | Acenaphthylene | 1.77 | UG/L | ND | Anthracene | 1.29 | UG/L | ND | Benzidine | 1.52 | UG/L | ND | Benzo[A]anthracene | 1.1 | UG/L | ND | 3,4-benzo(B)fluoranthene | 1.35 | UG/L | ND | Benzo[K]fluoranthene | 1.49 | UG/L | ND | Benzo[A]pyrene | 1.25 | UG/L | ND | Benzo[G,H,I]perylene | 1.09 | UG/L | ND | 4-bromophenyl phenyl ether | 1.4 | UG/L | ND | bis(2-chloroethoxy)methane | 1.01 | UG/L | ND | bis(2-chloroethyl) ether | 1.38 | UG/L | ND | Bis-(2-chloroisopropyl) ether | 1.16 | UG/L | ND | 4-chlorophenyl phenyl ether | 1.57 | UG/L | ND | <pre>2-chloronaphthalene</pre> | 1.87 | UG/L | ND | Chrysene | 1.16 | UG/L | ND | Dibenzo(A,H)anthracene | 1.01 | UG/L | ND | Butyl benzyl phthalate | 2.84 | UG/L | ND | ND | ND | ND | ND | ND | 3.0 | 4.4 | ND | ND | 4.3 | ND | 1.0 | | Di-n-butyl phthalate | 3.96 | UG/L | ND | Bis-(2-ethylhexyl) phthalate | 8.96 | UG/L | 13.8 | 14.0 | 14.2 | 11.0 | 10.3 | 12.6 | 17.2 | 11.1 | 11.7 | 15.7 | 9.7 | 10.6 | 12.7 | | Diethyl phthalate | 3.05 | UG/L | ND | 7.4 | 7.6 | 6.6 | 7.5 | 6.9 | 9.1 | 6.7 | 6.7 | 7.9 | 6.8 | 5.4 | 6.6 | | Dimethyl phthalate | 1.44 | UG/L | ND | Di-n-octyl phthalate | 1 | UG/L | ND | 3,3-dichlorobenzidine | 2.44 | UG/L | ND | 2,4-dinitrotoluene | 1.36 | UG/L | ND | 2,6-dinitrotoluene | 1.53 | UG/L | ND | 1,2-diphenylhydrazine | 1.37 | UG/L | ND | Fluoranthene | 1.33 | UG/L | ND | Fluorene | | UG/L | ND | Hexachlorobenzene | | UG/L | ND | Hexachlorobutadiene | | UG/L | ND | Hexachlorocyclopentadiene | | UG/L | ND | Hexachloroethane | | UG/L | ND | Indeno(1,2,3-CD)pyrene | | UG/L | ND | Isophorone | | UG/L | ND | Naphthalene | | UG/L | ND | Nitrobenzene | 1.6 | UG/L | ND | N-nitrosodimethylamine | | UG/L | ND | N-nitrosodi-n-propylamine | | UG/L | ND | N-nitrosodiphenylamine | | UG/L | ND | Phenanthrene | | UG/L | ND | Pyrene | | UG/L | ND | 1,2,4-trichlorobenzene | | UG/L | ND | Polynuc. Aromatic Hydrocarbons | | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | ====================================== | | | | | | | | | | | | | | | | | Base/Neutral Compounds | | UG/L | 13.8 | 21.4 | | | | | 29.3 | | | | 20.8 | | | | Additional analytes determine | | | | | | | | | | | | | | | == ===== | | Benzo[e]pyrene | | UG/L | ND
ND | | Biphenyl | | UG/L | ND | 2,6-dimethylnaphthalene | | UG/L | ND | 1-methylnaphthalene | | UG/L | ND | 1-methylphenanthrene | | UG/L | ND | 2-methylnaphthalene | | UG/L | ND | 2,3,5-trimethylnaphthalene | | UG/L | ND | Perylene | | UG/L | ND | | | | | | | | | | | | | | | | | #### POINT LOMA WASTEWATER TREATMENT PLANT SEWAGE ANNUAL Priority Pollutants Purgeables From 01-JAN-2009 to 31-DEC-2009 | | | | PLE
JAN | PLE
FEB | PLE
MAR | PLE
APR | PLE
MAY | PLE
JUN | PLE
JUL | PLE
AUG | PLE
SEP | PLE
OCT | PLE
NOV | PLE
DEC | PLE | |--|-------------|--------------|------------|------------|------------|------------|------------|------------|------------|------------|------------------|------------------------|------------|------------|-----------| | Analyte | MDL
==== | Units | Avg Average | | Acrolein | 1.3 | UG/L | ND | Acrylonitrile | .7 | UG/L | ND | Benzene | .4 | UG/L | ND | Bromodichloromethane | .5 | UG/L | 1.0 | 1.1 | 0.9 | <0.5 | 0.7 | 0.6 | 0.5 | ND | 0.6 | ND | 0.6 | 0.9 | 0.6 | | Bromoform | .5 | UG/L | ND | Bromomethane | .7 | UG/L | ND | <0.7 | ND | ND | 2.1 | 0.7 | <0.7 | 0.7 | ND | ND | ND | ND | 0.3 | | Carbon tetrachloride
Chlorobenzene |
.4 | UG/L | ND | Chloroethane | .4
.9 | UG/L
UG/L | ND
1.1 | ND
ND | ND
ND | ND
ND | ND
2.0 | ND
ND | ND
ND | ND
1.4 | ND
ND | ND
ND | ND
ND | ND
ND | ND
0.4 | | Chloroform | .2 | UG/L | 5.6 | 5.5 | 5.8 | 5.7 | 5.8 | 4.3 | 4.7 | 5.5 | 5.3 | 3.9 | 4.6 | 5.8 | 5.2 | | Chloromethane | .5 | UG/L | 9.6 | 4.9 | 4.9 | 5.2 | 11.6 | 4.8 | 5.1 | 7.9 | 3.7 | 7.1 | 8.1 | 8.9 | 6.8 | | Dibromochloromethane | .6 | UG/L | 0.8 | 0.9 | 0.8 | ND | <0.6 | ND | ND | ND | ND | ND | 0.6 | ND | 0.3 | | 1,2-dichlorobenzene | .4 | UG/L | ND | ND | ND | ND | ND | ND | 0.4 | ND | ND | ND | ND | ND | 0.0 | | 1,3-dichlorobenzene | .5 | UG/L | ND | 1,4-dichlorobenzene | .4 | UG/L | 1.3* | 0.6 | 0.6 | 1.1* | 0.8 | 0.7 | 0.8 | 1.5* | ^k 0.5 | <0.4 | <0.4 | 1 <0.4 | | | Dichlorodifluoromethane | .66 | UG/L | ND | 1,1-dichloroethane | .4 | UG/L | ND | 1,2-dichloroethane | .5 | UG/L | ND | 1,1-dichloroethene | .4 | UG/L | ND | trans-1,2-dichloroethene | .6 | UG/L | ND | 1,2-dichloropropane | .3 | UG/L | ND | cis-1,3-dichloropropene | .3 | UG/L | ND | trans-1,3-dichloropropene | .5 | UG/L | ND | Ethylbenzene | .3 | UG/L | ND | ND | ND
1 2 | 0.7 | 0.8 | 0.5 | ND | 0.5 | 1.2 | 0.3 | ND | ND | 0.3 | | Methylene chloride 1,1,2,2-tetrachloroethane | .3
.5 | UG/L
UG/L | 1.1
ND | 2.7^
ND | 1.3^
ND | 1.5^
ND | 2.4
ND | 6.2
ND | 1.7
ND | 2.0
ND | 3.0#
ND | 2.0 [/]
ND | 2.7
ND | 2.6
ND | 2.7
ND | | Tetrachloroethene | 1.1 | UG/L | ND
ND | ND | ND | ND
ND | ND | ND | ND | ND | ND
ND | ND | ND | ND | ND | | Toluene | .4 | UG/L | 0.6 | 0.9 | 0.7 | 4.8 | 1.8 | 0.8 | 0.8 | 4.6 | 1.0 | 0.8 | 1.1 | 0.7 | 1.6 | | 1,1,1-trichloroethane | .4 | UG/L | ND | 1,1,2-trichloroethane | .5 | UG/L | ND | Trichloroethene | .7 | UG/L | ND | Trichlorofluoromethane | .3 | UG/L | ND | Vinyl chloride | .4 | UG/L | ND | | ==== | ===== | ===== | ===== | ===== | ===== | ===== | ===== | ===== | ===== | ===== | ===== | ===== | ===== | ===== | | Halomethane Purgeable Cmpnds | | UG/L | 9.6 | 4.9 | 4.9 | 5.2 | 13.7 | 5.5 | 5.1 | 8.6 | 3.7 | 7.1 | 8.1 | 8.9 | 7.1 | | Dichlorobenzenes | .5 | UG/L | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Total Chloromethanes | .5 | UG/L | 16.3 | 10.4 | 10.7 | 10.9 | 19.8 | 15.3 | 11.5 | 15.4 | 9.0 | 11.0 | 15.4 | 17.3 | 13.6 | | Purgeable Compounds | 1.3 | UG/L | 19.8 | 13.9 | 13.7 | 16.4 | 28.0 | 18.6 | 14.0 | 22.6 | 12.3 | 12.1 | 17.7 | 18.9 | 17.3 | | Additional analytes determin | - | | | | | | | | | | | | | | | | A + - : - | | | | | | | | | ===== | | | | 465 | | 1062 | | Acetone | 4.5 | UG/L | 400 | 1440 | 748 | 1090 | 2330 | 1490 | 662 | 541 | 1010 | 1990 | 465 | 581 | 1062 | | Allyl chloride
Benzyl chloride | .6 | UG/L
UG/L | ND
ND | 2-butanone | 1.1
6.3 | UG/L | ND
ND | ND | ND | 7.1 | ND | ND | <6.3 | 7.8 | 8.0 | ND | 7.8 | 35.0 | 5.5 | | Carbon disulfide | .6 | UG/L | 2.5 | 2.2 | 2.9 | 2.5 | 2.9 | 2.0 | 2.6 | 3.5 | 3.4 | 3.1 | 1.8 | 2.4 | 2.7 | | Chloroprene | .4 | UG/L | ND | 1,2-dibromoethane | .3 | UG/L | ND | Isopropylbenzene | .3 | UG/L | ND | Methyl Iodide | .6 | UG/L | ND | Methyl methacrylate | .8 | UG/L | ND | Methyl tert-butyl ether | .4 | UG/L | 2.8 | 1.0 | 1.3 | 1.3 | 1.5 | 0.8 | 1.1 | 0.6 | 1.0 | 0.6 | 0.8 | 0.7 | 1.1 | | 2-nitropropane | 12 | UG/L | ND | ortho-xylene | .4 | UG/L | ND | 0.5 | ND | 1.5 | 1.5 | 1.0 | ND | 0.8 | 1.2 | 0.4 | 0.4 | ND | 0.6 | | Styrene | .3 | UG/L | ND | 0.4 | ND | 0.6 | 0.5 | 0.5 | ND | | 159.0 | ND | 2.4 | ND | 13.7 | | 1,2,4-trichlorobenzene | | UG/L | ND | meta,para xylenes | .6 | UG/L | ND | 0.8 | ND | 3.2 | 3.3 | 2.0 | ND | 1.8 | <0.6 | 0.9 | 0.8 | ND | 1.1 | | 2-chloroethylvinyl ether | 1.1 | UG/L | ND | 4-methyl-2-pentanone | 1.3 | UG/L | ND | ND | ND | <1.3 | ND 0.0 | ^{* =} Did not meet QC criteria for method blank recovery. The method blank was above the MDL, range of recoveries above the MDL for 1,4-dichlorobenzene are between 0.46 to 0.99 UG/L. ^{^ =} Did not meet QC criteria for method blank recovery. The method blank was above the MDL, range of recoveries above the MDL for Methylene chloride are between 0.34 to 0.73 UG/L. ^{# =} PLE Field blank did not meet QC criteria, field blank value above the MDL, 4.37ug/L of analyte found in field blank. #### POINT LOMA WASTEWATER TREATMENT PLANT SEWAGE ANNUAL Priority Pollutants Purgeables From 01-JAN-2009 to 31-DEC-2009 | Analyte | MDL | Units | PLR
JAN
Avg | PLR
FEB
Avg | PLR
MAR
Avg | PLR
APR
Avg | PLR
MAY
Avg | PLR
JUN
Avg | PLR
JUL
Avg | PLR
AUG
Avg | PLR
SEP
Avg | PLR
OCT
Avg | PLR
NOV
Avg | PLR
DEC
Avg | PLR
Average | |--|-------------|---------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|----------------| | | ==== | ===== | ===== | | | ==== | ===== | ==== | ===== | ===== | | ===== | | ===== | ===== | | Acrolein | 1.3 | UG/L | ND | Acrylonitrile | .7 | UG/L | ND | Benzene
Bromodichloromethane | .4
.5 | UG/L
UG/L | ND
0.6 | ND
0.7 | ND
0.9 | ND
ND ND
0.2 | | Bromoform | .5 | UG/L | ND | ND | ND | ND | ND | ND | 0.7 | ND | ND | ND
ND | ND | ND | 0.2 | | Bromomethane | .7 | UG/L | ND | Carbon tetrachloride | .4 | UG/L | ND | Chlorobenzene | .4 | UG/L | ND | Chloroethane | .9 | UG/L | ND | Chloroform | .2 | UG/L | 2.4 | 2.8 | 3.3 | 3.3 | 3.0 | 3.1 | 3.3 | 4.8 | 4.5 | 2.8 | 2.5 | 2.8 | 3.2 | | Chloromethane | .5 | UG/L | ND | Dibromochloromethane | .6 | UG/L | 0.6 | 0.7 | 0.8 | ND 0.2 | | 1,2-dichlorobenzene | .4 | UG/L | ND | ND | ND | ND
ND | ND
ND | ND
ND | ND | ND | ND | ND | ND
ND | ND | ND | | <pre>1,3-dichlorobenzene 1,4-dichlorobenzene</pre> | .5
.4 | UG/L
UG/L | ND
1.9* | ND
0.7 | ND
0.8 | 1.2* | | 0.8 | ND
0.9 | ND
1.7* | ND
0.9 | ND
0.6 | иD
0.5 | ND
0.5 | ND
5 0.7 | | Dichlorodifluoromethane | .66 | UG/L | ND ND. | ND | | 1,1-dichloroethane | .4 | UG/L | ND | 1,2-dichloroethane | .5 | UG/L | ND | 1,1-dichloroethene | .4 | UG/L | ND | trans-1,2-dichloroethene | .6 | UG/L | ND | 1,2-dichloropropane | .3 | UG/L | ND | cis-1,3-dichloropropene | .3 | UG/L | ND | trans-1,3-dichloropropene | .5 | UG/L | ND | Ethylbenzene | .3 | UG/L | ND
1 0 | ND | ND
1 40 | 0.3 | 0.7 | 0.5 | ND
1 2 | ND | 1.4 | ND
1 8A | 0.4 | ND
1 | 0.3 | | Methylene chloride 1,1,2,2-tetrachloroethane | .3
.5 | UG/L
UG/L | 1.0
ND | 2.2^
ND | 1.4^
ND | 1.4^
ND | 1.6
ND | 3.0
ND | 1.2
ND | 3.5
ND | 1.7
ND | 1.8^
ND | 2.8
ND | 1.6
ND | 2.1
ND | | Tetrachloroethene | 1.1 | UG/L | ND | Toluene | .4 | UG/L | 0.6 | 0.9 | 0.7 | 2.2 | 1.3 | 0.6 | 0.6 | 1.0 | 0.9 | 0.7 | 1.0 | 0.6 | 0.9 | | 1,1,1-trichloroethane | .4 | UG/L | ND | 1,1,2-trichloroethane | .5 | UG/L | ND | Trichloroethene | .7 | UG/L | ND | Trichlorofluoromethane | .3 | UG/L | ND | Vinyl chloride | .4
==== | UG/L
===== | ND
===== | ND
===== | ND
===== = | ND
===== | ND
===== | ND
===== | ND | ND
===== | ND
===== | ND | ND
==== | ND
===== | ND | | Halomethane Purgeable Cmpnds | | UG/L | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.7 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1 | | Dichlorobenzenes | .5 | UG/L | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Total Chloromethanes | .5 | UG/L | 3.4 | 2.8 | 3.3 | 3.3 | 4.6 | 6.1 | 4.5 | 8.3 | 6.2 | 2.8 | 5.3 | 4.4 | 4.6 | | Purgeable Compounds | 1.3 | UG/L | 5.2 | 5.8 | 6.5 | 5.8 | 7.5 | 8.0 | 6.7 | 9.3 | 9.4 | 4.1 | 7.2 | 5.5 | 6.8 | | Additional analytes determin | - | | | | | | | | | | | | | | | | Acetone | ====
4.5 | =====
UG/L | 438 | 1390 | 933 | 482 | 2940 | 819 | 742 | 286 | 2930 | 2910 | 446 | 387 | 1225 | | Allyl chloride | .6 | UG/L | ND | Benzyl chloride | 1.1 | UG/L | ND | 2-butanone | 6.3 | UG/L | ND | ND | ND | 6.3 | ND | ND | ND | ND | 8.7 | ND | 10.5 | 55.4 | 6.7 | | Carbon disulfide | .6 | UG/L | 1.6 | 1.3 | 1.8 | 1.7 | 2.3 | 1.4 | 1.6 | 2.7 | 1.6 | 2.6 | 1.4 | 1.5 | 1.8 | | Chloroprene | .4 | UG/L | ND | 1,2-dibromoethane | .3 | UG/L | ND | Isopropylbenzene | .3 | UG/L | ND | Methyl Iodide | .6 | UG/L | ND | Methyl methacrylate
Methyl tert-butyl ether | .8 | UG/L | ND
4 A | ND
0.5 | ND
a c | ND
1 6 | ND
1 A | ND
ND | ND
0.6 | ND
ND | ND
ND | ND | ND
a s | ND
ND | ND
0.7 | | 2-nitropropane | .4
12 | UG/L
UG/L | 4.0
ND | ND | 0.6
ND | 1.6
ND | 1.0
ND | ND
ND | ۰.6
ND | ND
ND | ND
ND | ND
ND | 0.5
ND | ND
ND | 0.7
ND | | ortho-xylene | .4 | UG/L | ND
ND | 0.5 | ND | 0.5 | 1.2 | 1.0 | ND | 0.5 | 2.3 | ND | 0.6 | ND | 0.6 | | Styrene | .3 | UG/L | ND | 0.4 | ND | 1.0 | 0.6 | 0.7 | 0.4 | | 191.0 | 0.4 | 2.8 | ND | 16.5 | | 1,2,4-trichlorobenzene | | UG/L | ND | meta,para xylenes | .6 | UG/L | ND | 0.9 | ND | 1.2 | 3.0 | 1.9 | ND | 1.0 | 2.8 | 0.6 | 1.2 | 0.7 | 1.1 | | 2-chloroethylvinyl ether | 1.1 | UG/L | ND | 4-methyl-2-pentanone | 1.3 | UG/L | ND ^{* =} Did not meet QC criteria for method blank recovery. The method blank was above the MDL, range of recoveries above the MDL for 1,4-dichlorobenzene are between 0.46 to 0.99 UG/L. ^{^ =} Did not meet QC criteria for method blank recovery. The method blank was above the MDL, range of recoveries above the MDL for Methylene chloride are between 0.34 to 0.73 UG/L. ^{# =} PLE Field blank did not meet QC criteria, field blank value above the mDL, 4.37ug/L of analyte found in field blank. From 01-JAN-2009 to 31-DEC-2009 | | | | | PLE |---|-----|-------|-------|---------|---------|---------|---------|---------|---------|---------|---------| | | | | | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | | Analyte | MDL | Units | Equiv |
P458011 | P458387 | P465220 | P468381 | P468671 | P475678 | P480147 | P481200 | | ======================================= | === | ===== | ===== | ====== | ====== | ====== | ====== | ======= | ====== | ====== | ====== | | 2,3,7,8-tetra CDD | 125 | PG/L | 1.000 | ND | 1,2,3,7,8-penta CDD | 123 | PG/L | 0.500 | ND | 1,2,3,4,7,8_hexa_CDD | 113 | PG/L | 0.100 | ND | 1,2,3,6,7,8-hexa CDD | 98 | PG/L | 0.100 | ND | 1,2,3,7,8,9-hexa CDD | 111 | PG/L | 0.100 | ND | 1,2,3,4,6,7,8-hepta CDD | 137 | PG/L | 0.010 | ND | octa CDD | 247 | PG/L | 0.001 | ND | 2,3,7,8-tetra CDF | 115 | PG/L | 0.100 | ND | 1,2,3,7,8-penta CDF | 140 | PG/L | 0.050 | ND | 2,3,4,7,8-penta CDF | 118 | PG/L | 0.500 | ND | 1,2,3,4,7,8-hexa CDF | 147 | PG/L | 0.100 | ND | 1,2,3,6,7,8-hexa CDF | 107 | PG/L | 0.100 | ND | 1,2,3,7,8,9-hexa CDF | 152 | PG/L | 0.100 | ND | 2,3,4,6,7,8-hexa CDF | 148 | PG/L | 0.100 | ND | 1,2,3,4,6,7,8-hepta CDF | 90 | PG/L | 0.010 | ND | 1,2,3,4,7,8,9-hepta CDF | 166 | PG/L | 0.010 | ND | octa CDF | 222 | PG/L | 0.001 | ND | | | | | PLE | PLE | PLE | PLE | |-------------------------|-----|-------|-------|---------|---------|---------|---------| | | | | | SEP | OCT | NOV | DEC | | Analyte | MDL | Units | Equiv | P489438 | P490472 | P497185 | P499838 | | | === | ===== | ===== | ======= | ====== | ======= | ======= | | 2,3,7,8-tetra CDD | 125 | PG/L | 1.000 | ND | ND | ND | ND | | 1,2,3,7,8-penta CDD | 123 | PG/L | 0.500 | ND | ND | ND | ND | | 1,2,3,4,7,8_hexa_CDD | 113 | PG/L | 0.100 | ND | ND | ND | ND | | 1,2,3,6,7,8-hexa CDD | 98 | PG/L | 0.100 | ND | ND | ND | ND | | 1,2,3,7,8,9-hexa CDD | 111 | PG/L | 0.100 | ND | ND | ND | ND | | 1,2,3,4,6,7,8-hepta CDD | 137 | PG/L | 0.010 | ND | ND | ND | ND | | octa CDD | 247 | PG/L | 0.001 | ND | ND | ND | ND | | 2,3,7,8-tetra CDF | 115 | PG/L | 0.100 | ND | ND | ND | ND | | 1,2,3,7,8-penta CDF | 140 | PG/L | 0.050 | ND | ND | ND | ND | | 2,3,4,7,8-penta CDF | 118 | PG/L | 0.500 | ND | ND | ND | ND | | 1,2,3,4,7,8-hexa CDF | 147 | PG/L | 0.100 | ND | ND | ND | ND | | 1,2,3,6,7,8-hexa CDF | 107 | PG/L | 0.100 | ND | ND | ND | ND | | 1,2,3,7,8,9-hexa CDF | 152 | PG/L | 0.100 | ND | ND | ND | ND | | 2,3,4,6,7,8-hexa CDF | 148 | PG/L | 0.100 | ND | ND | ND | ND | | 1,2,3,4,6,7,8-hepta CDF | 90 | PG/L | 0.010 | ND | ND | ND | ND | | 1,2,3,4,7,8,9-hepta CDF | 166 | PG/L | 0.010 | ND | ND | ND | ND | | octa CDF | 222 | PG/L | 0.001 | ND | ND | ND | ND | Above are permit required CDD/CDF isomers. nd= not detected NA= not analyzed NS= not sampled From 01-JAN-2009 to 31-DEC-2009 | Analyte | MDI | Units | PLE
TCDD
JAN
P458011 | PLE
TCDD
FEB
P458387 | PLE
TCDD
MAR
P465220 | PLE
TCDD
APR
P468381 | PLE
TCDD
MAY
P468671 | PLE
TCDD
JUN
P475678 | PLE
TCDD
JUL
P480147 | PLE
TCDD
AUG
P481200 | |-------------------------|-----|-------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------| | • | | ===== | ======= | | | | | | | ======= | | 2,3,7,8-tetra CDD | | PG/L | ND | 1,2,3,7,8-penta CDD | 123 | PG/L | ND | 1,2,3,4,7,8_hexa_CDD | 113 | PG/L | ND | 1,2,3,6,7,8-hexa CDD | 98 | PG/L | ND | 1,2,3,7,8,9-hexa CDD | 111 | PG/L | ND | 1,2,3,4,6,7,8-hepta CDD | 137 | PG/L | ND | octa CDD | 247 | PG/L | ND | 2,3,7,8-tetra CDF | 115 | PG/L | ND | 1,2,3,7,8-penta CDF | 140 | PG/L | ND | 2,3,4,7,8-penta CDF | 118 | PG/L | ND | 1,2,3,4,7,8-hexa CDF | 147 | PG/L | ND | 1,2,3,6,7,8-hexa CDF | | PG/L | ND | 1,2,3,7,8,9-hexa CDF | | PG/L | ND | 2,3,4,6,7,8-hexa CDF | | PG/L | ND | 1,2,3,4,6,7,8-hepta CDF | | PG/L | ND | 1,2,3,4,7,8,9-hepta CDF | | | ND | octa CDF | 222 | PG/L | ND | | | | | | | | | | | | | | | | DLE | DIE | DLE | DLE | | | | | | | | | PLE | PLE | PLE | PLE | | | | | | | | | TCDD
SEP | TCDD
OCT | TCDD
NOV | TCDD
DEC | | | | | | Analyte | MDI | Units | P489438 | P490472 | P497185 | P499838 | | | | | | , | | ===== | | ======= | | | | | | | | 2,3,7,8-tetra CDD | | PG/L | ND | ND | ND | ND | | | | | | 1,2,3,7,8-penta CDD | | PG/L | ND | ND | ND | ND | | | | | | 1,2,3,4,7,8_hexa_CDD | | PG/L | ND | ND | ND | ND | | | | | | 1,2,3,6,7,8-hexa CDD | 98 | PG/L | ND | ND | ND | ND | | | | | | 1,2,3,7,8,9-hexa CDD | 111 | PG/L | ND | ND | ND | ND | | | | | | 1,2,3,4,6,7,8-hepta CDD | 137 | PG/L | ND | ND | ND | ND | | | | | | octa CDD | 247 | PG/L | ND | ND | ND | ND | | | | | | 2,3,7,8-tetra CDF | 115 | PG/L | ND | ND | ND | ND | | | | | | 1,2,3,7,8-penta CDF | 140 | PG/L | ND | ND | ND | ND | | | | | | 2,3,4,7,8-penta CDF | 118 | PG/L | ND | ND | ND | ND | | | | | | 1,2,3,4,7,8-hexa CDF | 147 | PG/L | ND | ND | ND | ND | | | | | | 1,2,3,6,7,8-hexa CDF | 107 | PG/L | ND | ND | ND | ND | | | | | | 1,2,3,7,8,9-hexa CDF | | PG/L | ND | ND | ND | ND | | | | | | 2,3,4,6,7,8-hexa CDF | | PG/L | ND | ND | ND | ND | | | | | | 1,2,3,4,6,7,8-hepta CDF | | PG/L | ND | ND | ND | ND | | | | | | 1,2,3,4,7,8,9-hepta CDF | | | ND | ND | ND | ND | | | | | | octa CDF | 222 | PG/L | ND | ND | ND | ND | | | | | Above are permit required CDD/CDF isomers. nd= not detected NA= not analyzed $\,$ NS= not sampled From 01-JAN-2009 to 31-DEC-2009 | | | | | PLR |---|-----|-------|-------|---------|---------|---------|---------|---------|---------|---------|---------|---------| | | | | | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | Analyte | MDL | Units | Equiv | P458014 | P458392 | P465223 | P468384 | P468676 | P475681 | P480150 | P481205 | P489441 | | ======================================= | === | ===== | ===== | ====== | | ====== | ====== | ====== | | ====== | ====== | ====== | | 2,3,7,8-tetra CDD | 125 | PG/L | 1.000 | ND | 1,2,3,7,8-penta CDD | 123 | PG/L | 0.500 | ND | 1,2,3,4,7,8_hexa_CDD | 113 | PG/L | 0.100 | ND | 1,2,3,6,7,8-hexa CDD | 98 | PG/L | 0.100 | ND | 1,2,3,7,8,9-hexa CDD | 111 | PG/L | 0.100 | ND | 1,2,3,4,6,7,8-hepta CDD | 137 | PG/L | 0.010 | ND | octa CDD | 247 | PG/L | 0.001 | ND | 2,3,7,8-tetra CDF | 115 | PG/L | 0.100 | ND | 1,2,3,7,8-penta CDF | 140 | PG/L | 0.050 | ND | 2,3,4,7,8-penta CDF | 118 | PG/L | 0.500 | ND | 1,2,3,4,7,8-hexa CDF | 147 | PG/L | 0.100 | ND | 1,2,3,6,7,8-hexa CDF | 107 | PG/L | 0.100 | ND | 1,2,3,7,8,9-hexa CDF | 152 | PG/L | 0.100 | ND | 2,3,4,6,7,8-hexa CDF | 148 | PG/L | 0.100 | ND | 1,2,3,4,6,7,8-hepta CDF | 90 | PG/L | 0.010 | ND | 1,2,3,4,7,8,9-hepta CDF | 166 | PG/L | 0.010 | ND | octa CDF | 222 | PG/L | 0.001 | ND | Analyte | MDL | Units | Equiv | PLR
0CT
P490477 | PLR
NOV
P496635 | PLR
DEC
P499841 | |-------------------------|-----|-------|-------|-----------------------|-----------------------|-----------------------| | | === | ===== | ===== | ======= | | ====== | | 2,3,7,8-tetra CDD | 125 | PG/L | 1.000 | ND | ND | ND | | 1,2,3,7,8-penta CDD | 123 | PG/L | 0.500 | ND | ND | ND | | 1,2,3,4,7,8_hexa_CDD | 113 | PG/L | 0.100 | ND | ND | ND | | 1,2,3,6,7,8-hexa CDD | 98 | PG/L | 0.100 | ND | ND | ND | | 1,2,3,7,8,9-hexa CDD | 111 | PG/L | 0.100 | ND | ND | ND | | 1,2,3,4,6,7,8-hepta CDD | 137 | PG/L | 0.010 | ND | ND | ND | | octa CDD | 247 | PG/L | 0.001 | ND | ND | ND | | 2,3,7,8-tetra CDF | 115 | PG/L | 0.100 | ND | ND | ND | | 1,2,3,7,8-penta CDF | 140 | PG/L | 0.050 | ND | ND | ND | | 2,3,4,7,8-penta CDF | 118 | PG/L | 0.500 | ND | ND | ND | | 1,2,3,4,7,8-hexa CDF | 147 | PG/L | 0.100 | ND | ND | ND | | 1,2,3,6,7,8-hexa CDF | 107 | PG/L | 0.100 | ND | ND | ND | | 1,2,3,7,8,9-hexa CDF | 152 | PG/L | 0.100 | ND | ND | ND | | 2,3,4,6,7,8-hexa CDF | 148 | PG/L | 0.100 | ND | ND | ND | | 1,2,3,4,6,7,8-hepta CDF | 90 | PG/L | 0.010 | ND | ND | ND | | 1,2,3,4,7,8,9-hepta CDF | 166 | PG/L | 0.010 | ND | ND | ND | | octa CDF | 222 | PG/L | 0.001 | ND | ND | ND | Above are permit required CDD/CDF isomers. nd= not detected NA= not analyzed $\,$ NS= not sampled From 01-JAN-2009 to 31-DEC-2009 | Analyte
 | | Units | PLR
TCDD
JAN
P458014 | PLR
TCDD
FEB
P458392 | PLR
TCDD
MAR
P465223 | PLR
TCDD
APR
P468384 | PLR
TCDD
MAY
P468676 | PLR
TCDD
JUN
P475681 | PLR
TCDD
JUL
P480150 | PLR
TCDD
AUG
P481205 | PLR
TCDD
SEP
P489441 | |---|------------|--------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------| | 2,3,7,8-tetra CDD | | PG/L | ND | 1,2,3,7,8-penta CDD | | PG/L | ND | 1,2,3,4,7,8_hexa_CDD | 113 | PG/L | ND | 1,2,3,6,7,8-hexa CDD | 98 | | ND | 1,2,3,7,8,9-hexa CDD | | PG/L | ND | 1,2,3,4,6,7,8-hepta CDD | | | ND | octa CDD | | PG/L | ND | 2,3,7,8-tetra CDF | | PG/L | ND | 1,2,3,7,8-penta CDF | | PG/L
PG/L | ND | 2,3,4,7,8-penta CDF
1,2,3,4,7,8-hexa CDF | | PG/L
PG/L | ND
ND | 1,2,3,6,7,8-hexa CDF | | PG/L | ND
ND | 1,2,3,7,8,9-hexa CDF | | PG/L | ND
ND | ND | 2,3,4,6,7,8-hexa CDF | | PG/L | ND | 1,2,3,4,6,7,8-hepta CDF | | PG/L | ND | 1,2,3,4,7,8,9-hepta CDF | | PG/L | ND | octa CDF | | PG/L | ND | Analyte | | Units | PLR
TCDD
OCT
P490477 | PLR
TCDD
NOV
P496635 | PLR
TCDD
DEC
P499841 | | | | | | | | 2,3,7,8-tetra CDD | ===
125 | ====
PG/L | ======
ND | ND | ND | | | | | | | | 1,2,3,7,8-penta CDD | | PG/L | ND ND | ND | ND | | | | | | | | 1,2,3,4,7,8_hexa_CDD | | PG/L | ND | ND | ND | | | | | | | | 1,2,3,6,7,8-hexa CDD | 98 | | ND | ND | ND | | | | | | | | 1,2,3,7,8,9-hexa CDD | 111 | PG/L | ND | ND | ND | | | | | | | | 1,2,3,4,6,7,8-hepta CDD | 137 | PG/L | ND | ND | ND | | | | | | | | octa CDD | 247 | PG/L | ND | ND | ND | | | | | | | | 2,3,7,8-tetra CDF | | PG/L | ND | ND | ND | | | | | | | | 1,2,3,7,8-penta CDF | | PG/L | ND
 ND | ND | | | | | | | | 2,3,4,7,8-penta CDF | | PG/L | ND | ND | ND | | | | | | | | 1,2,3,4,7,8-hexa CDF | | PG/L | ND | ND | ND | | | | | | | | 1,2,3,6,7,8-hexa CDF | | PG/L | ND | ND | ND | | | | | | | | 1,2,3,7,8,9-hexa CDF | | PG/L | ND | ND | ND | | | | | | | | 2,3,4,6,7,8-hexa CDF | | PG/L | ND | ND | ND | | | | | | | | 1,2,3,4,6,7,8-hepta CDF | | PG/L | ND | ND | ND | | | | | | | | 1,2,3,4,7,8,9-hepta CDF octa CDF | | PG/L
PG/L | ND
ND | ND
ND | ND
ND | | | | | | | | octa coi | 222 | FU/ L | שוא | טויו | טאו | | | | | | | Above are permit required CDD/CDF isomers. nd= not detected NA= not analyzed $\,$ NS= not sampled ### 2009 **Point Loma Treatment Plant Total Coliforms** The following are the monthly Total Coliform results of the Point Loma Treatment Plant Effluent. The value is stated in terms of Most Probable Number (MPN) per 100 milliliters of sample. SAMPLE SOURCE (Pt. Loma Treatment Plant Effluent) | DATE | TOTAL | |--------------------|-------------------| | | COLIFORM | | | (MPN Index/100ml) | | January 29, 2009 | 45,000 | | February 24, 2009 | 1,100,000 | | March 10, 2009 | 2,300,000 | | April 2, 2009 | 4,900,000 | | May 19, 2009 | 2,300,000 | | June 25, 2009 | 940,000 | | July 14, 2009 | 13,000,000 | | August 18, 2009 | 23,000,000 | | September 15, 2009 | 2,300,000 | | October 8, 2009 | 7,900,000 | | November 18, 2009 | 4,900,000 | | December 1, 2009 | 7,900,000 | Average 5,882,083 #### POINT LOMA WASTEWATER TREATMENT PLANT #### From 01-JAN-2009 To 31-DEC-2009 | | Total
Hardness | | | Calcium
Hardness | | Magnesium
Hardness | | Calcium | | Magnesium | | |----------------------|-------------------|--------------|----------------------|---------------------|-----------------------|-----------------------|-----------------------|--------------|----------------------|--------------------|--| | MDL: | .4
Inf. | mg/L
Eff. | .1
Inf.
====== | mg/L
Eff. | .4
Inf.
======= | mg/L
Eff. | .04
Inf.
====== | mg/L
Eff. | .1
Inf.
====== | mg/L
Eff. | | | JANUARY -2009 | 440 | 440 | 214 | 213 | 226 | 227 | 86 | 86 | 55 | 55 | | | FEBRUARY -2009 | 433 | 437 | 212 | 214 | 221 | 223 | 85 | 86 | 54 | 54 | | | MARCH - 2009 | 463 | 461 | 229 | 226 | 235 | 235 | 92 | 91 | 57 | 57 | | | APRIL -2009 | 462 | 460 | 228 | 227 | 235 | 233 | 91 | 91 | 57 | 57 | | | MAY - 2009 | 472 | 476 | 228 | 229 | 245 | 247 | 91 | 92 | 59 | 60 | | | JUNE -2009 | 443 | 448 | 216 | 218 | 228 | 230 | 86 | 88 | 55 | 56 | | | JULY -2009 | 454 | 450 | 216 | 216 | 238 | 235 | 87 | 86 | 58 | 57 | | | AUGUST -2009 | 444 | 458 | 205 | 208 | 239 | 250 | 82 | 83 | 58 | 61 | | | SEPTEMBER-2009 | 436 | 436 | 200 | 200 | 235 | 236 | 80 | 80 | 57 | 57 | | | OCTOBER -2009 | 392 | 397 | 180 | 183 | 212 | 213 | 72 | 73 | 51 | 52 | | | NOVEMBER -2009 | 446 | 448 | 209 | 211 | 237 | 237 | 84 | 85 | 57 | 58 | | | DECEMBER -2009 | 476
====== | 470
===== | 232
====== | 230 | 244
====== | 240 | 93
====== | 92
===== | 59
======= | 58
====== | | | Average: | 447 | 448 | 214 | 215 | 233 | 234 | 86 | 86 | 56 | 57 | | | | Alkalinity | | Total | | Total Vol. | | Conductivity | | Fluoride | | | | | | | Solid | | Solid | | | . , | | ,, | | | MDL: | 20 | mg/L | 10 | mg/L | 100 | mg/L | | hos/cm | .05 | mg/L | | | ========= | Inf. | Eff. | Inf.
====== | Eff. | Inf.
====== | Eff. | Inf.
======= | Eff. | Inf. | Eff. | | | JANUARY -2009 | 287 | 271 | 1990 | 1760 | 471 | 251 | 2940 | 3000 | 0.63 | 0.66 | | | FEBRUARY -2009 | 296 | 280 | 2040 | 1800 | 497 | 281 | 3040 | 3050 | 0.69 | 0.73 | | | MARCH -2009 | 307 | 293 | 2150 | 1880 | 549 | 305 | 3080 | 3100 | 0.72 | 0.73 | | | APRIL -2009 | 318 | 304 | 2150 | 1870 | 539 | 291 | 3120 | 3170 | 0.80 | 0.83 | | | MAY - 2009 | 318 | 298 | 2180 | 1900 | 574 | 319 | 3150 | 3190 | 0.75 | 0.78 | | | JUNE -2009 | 320 | 297 | 1690 | 1880 | 578 | 804 | 3080 | 3120 | 0.86 | 0.81 | | | JULY -2009 | 317 | 301 | 2250 | 1920 | 605 | 317 | 3190 | 3170 | 0.67 | 0.69 | | | AUGUST -2009 | 306 | 294 | 2490 | 2170 | 721 | 436 | 3410 | 3450 | 0.71 | 0.71 | | | SEPTEMBER-2009 | 304 | 293 | 2420 | 2110 | 665 | 390 | 3410 | 3420 | 0.88 | 0.90 | | | OCTOBER -2009 | 296 | 282 | 2000 | 1730 | 528 | 284 | 2980 | 2990 | 0.72 | 0.70 | | | NOVEMBER -2009 | 318 | 305 | 2160 | 1850 | 546 | 294 | 3200 | 3170 | 0.76 | 0.78 | | | DECEMBER -2009 | 297 | 285 | 2090 | 1830 | 521 | 301 | 3150 | 3160 | 0.66 | 0.69 | | | <pre> Average:</pre> | 307 | 292 | 2134 | 1892 | =======
566 | 356 | ========
3146 | 3166 | 0.74 | 0.75 | | | | Chloride | | D., | Bromide | | Sulfate | | Nitrate | | Ortho
Phosphate | | | | | | BLOWI | | | | | | | | | | MDL: | 7
Inf. | mg/L
Eff. | .1
Inf. | mg/L
Eff. | 9
Inf. | mg/L
Eff. | .04
Inf. | mg/L
Eff. | .2
Inf. | mg/L
Eff. | | | ========== | ======== | | ======== | | ======== | | ======== | | ======== | | | | JANUARY -2009 | 573 | 593 | 1.31 | 1.45 | 268 | 264 | 0.11 | 0.07 | 5.25 | 2.97 | | | FEBRUARY -2009 | 590 | 609 | 1.56 | 1.58 | 293 | 288 | 0.18 | 0.69 | 4.62 | 2.79 | | | MARCH - 2009 | 606 | 632 | 1.58 | 1.64 | 298 | 294 | ND | 0.28 | 4.43 | 2.54 | | | APRIL -2009 | 596 | 634 | 1.51 | 1.52 | 293 | 294 | 0.23 | 0.72 | 5.76 | 3.71 | | | MAY -2009 | 635 | 665 | 1.61 | 1.63 | 283 | 278 | 0.16 | 0.14 | 6.14 | 2.25 | | | JUNE -2009 | 631 | 649 | 1.57 | 1.58 | 274 | 267 | 0.17 | 0.16 | 6.31 | 4.64 | | | JULY -2009 | 671 | 678 | 1.40 | 1.68 | 272 | 262 | 0.17 | 0.99 | 6.14 | 4.90 | | | AUGUST -2009 | 700 | 747 | 1.90 | 1.98 | 262 | 260 | 0.15 | 0.16 | 8.67 | 6.56 | | | SEPTEMBER-2009 | 739 | 755 | 2.00 | 1.99 | 272 | 263 | 0.13 | 0.14 | 6.77 | 5.21 | | | OCTOBER -2009 | 621 | 639 | 1.59 | 1.58 | 224 | 215 | 0.35 | 0.80 | 6.91 | 5.67 | | | NOVEMBER -2009 | 662 | 679 | 1.64 | 1.65 | 261 | 253 | 0.14 | 0.86 | 2.25 | 2.10 | | | DECEMBER -2009 | 626
====== | 644 | 1.54
====== | 1.57 | 301
====== | 295 | 0.22
====== | 0.48 | 4.80
====== | 3.61 | | | Average: | 638 | 660 | 1.60 | 1.65 | 275 | 269 | 0.17 | 0.46 | 5.67 | 3.91 | | #### POINT LOMA WASTEWATER TREATMENT PLANT #### From 01-JAN-2009 To 31-DEC-2009 | | Lithium Sodium | | um | Potass | Chemic
Oxygen D | | Soluble
BOD | | | | |----------------------------|--------------------------|---------------|-----------------|--------------|--------------------|--------------|----------------|--------------|------------------|--------------| | MDL: | .002 | mg/L | 1 | mg/L | .3 | mg/L | 18 | mg/L | 2 | mg/L | | | Inf. | Eff. | | JANUARY -2009 | 0.041 | 0.041 | 368 | 380 | ========
25.8 | 25.6 | =======
532 | =====
227 | ====== 72 | 66 | | FEBRUARY -2009 | 0.041 | 0.041 | 345 | 357 | 22.9 | 23.0 | 572 | 241 | 66 | 65 | | MARCH - 2009 | 0.049 | 0.048 | 376 | 386 | 25.2 | 25.0 | 504 | 214 | 76 | 69 | | APRIL -2009 | 0.050 | 0.051 | 387 | 394 | 26.3 | 26.3 | 641 | 202 | 73 | 67 | | MAY -2009 | 0.046 | 0.046 | 406 | 421 | 28.2 | 28.5 | 643 | 242 | 88 | 73 | | JUNE -2009 | 0.045 | 0.046 | 389 | 398 | 27.1 | 27.0 | 603 | 228 | 80 | 68 | | JULY -2009 | 0.045 | 0.044 | 413 | 416 | 28.2 | 27.9 | 600 | 206 | 74 | 64 | | AUGUST -2009 | 0.047 | 0.047 | 437 | 461 | 29.7 | 30.1 | 615 | 234 | 79 | 64 | | SEPTEMBER-2009 | 0.045 | 0.046 | 416 | 422 | 27.8 | 27.4 | 596 | 214 | 73 | 66 | | OCTOBER -2009 | 0.037 | 0.039 | 383 | 392 | 27.1 | 27.2 | 615 | 228 | 82 | 72 | | NOVEMBER -2009 | 0.042 | 0.042 | 409 | 417 | 29.5 | 29.2 | 710 | 250 | 82 | 77 | | DECEMBER -2009 | 0.051 | 0.051 | 398 | 404 | 26.9 | 26.8 | 633 | 248 | 71 | 69 | | Average: | 0.04 | 0.05 | 394 | 404 | 27.1 | 27.0 | 605 | 228 | ========
76 | 68 | | Average. | 0.04 | 0.03 | 394 | 404 | 27.1 | 27.0 | 003 | 220 | 70 | 08 | | | Total Disolved
Solids | | Floatables | | Turbidity | | Aluminum | | Barium | | | MDL: | 28 | mg/L | 1.4 | mg/L | .13 | NTU | 47 | ug/L | .039 | ug/L | | | Inf. | Eff. | | | ======== | | ======== | | ======== | | ======== | | ======== | | | JANUARY -2009 | 1760 | 1770 | <1.4 | ND | 136 | 36 | 963 | 264 | 101 | 46 | | FEBRUARY -2009 | 1680 | 1690 | 1.6 | ND | 134 | 32 | 934 | 220 | 108 | 49 | | MARCH -2009
APRIL -2009 | 1830
1770 | 1830
1780 | 1.7 | ND
ND | 143
143 | 35
33 | 969
857 | 239
131 | 107
117 | 50
48 | | MAY -2009 | 1770 | 1800 | <1.4
<1.4 | ND
ND | 143 | 33
39 | 1090 | 220 | 117 | 46
45 | | JUNE -2009 | 1810 | 1840 | 1.4 | ND | 146 | 35 | 1010 | 166 | 102 | 40 | | JULY -2009 | 1830 | 1840 | <1.4 | ND | 144 | 39 | 1050 | 199 | 108 | 46 | | AUGUST -2009 | 2100 | 2120 | <1.4 | ND | 140 | 43 | 956 | 184 | 95 | 49 | | SEPTEMBER-2009 | 2010 | 2040 | <1.4 | ND | 139 | 41 | 875 | 179 | 97 | 45 | | OCTOBER -2009 | 1690 | 1710 | <1.4 | ND | 144 | 43 | 1220 | 140 | 106 | 34 | | NOVEMBER -2009 | 1730 | 1740 | <1.4 | ND | 139 | 43 | 721 | 187 | 84 | 39 | | DECEMBER -2009 | 1790 | 1800 | 1.9 | ND | 137 | 37 | 839 | 159 | 100 | 47 | | Average: | 1816 | 1830 | 0.6 | ND | 141 | 38 | 957 | =====
191 | 103 | 45 | | | Boron | | Cobalt | | Molybdenum | | Manganese | | Vanadium | | | MDI • | - | ua /1 | 0.5 | ue /1 | 90 | ua /1 | 24 | /1 | <i>C</i> 4 | uc /1 | | MDL: | 7
Inf. | ug/L
Eff. | .85
Inf. | ug/L
Eff. | .89
Inf. | ug/L
Eff. | .24
Inf. | ug/L
Eff. | .64
Inf. | ug/L
Eff. | | | | | ======== | | ========= | | ======== | | ======== | | | JANUARY -2009 | 434 | 414 | <0.85 | <0.85 | 11 | 9 | 111 | 104 | 2.32 | ND | | FEBRUARY -2009 | 425 | 429 | <0.85 | <0.85 | 11 | 10 | 111 | 111 | 3.56 | 0.69 | | MARCH - 2009 | 435 | 444 | ND | ND | 10 | 9 | 112 | 112 | 2.96 | <0.64 | | APRIL -2009 | 433 | 433 | <0.85 | ND | 11 | 9 | 110 | 103 | 3.64 | 0.79 | | MAY -2009 | 446 | 451 | 1.13 | <0.85 | 13 | 12 | 111 | 110 | 3.75 | 0.79 | | JUNE -2009 | 428 | 429 | <0.85 | ND | 12 | 10 | 113 | 107 | 3.95 | <0.64 | | JULY -2009 | 434 | 431 | <0.85 | ND | 13 | 9 | 106 | 95 | 3.25 | <0.64 | | AUGUST -2009 | 461 | 473 | <0.85 | ND | 12 | 10 | 100 | 100 | 3.63 | 1.02 | | SEPTEMBER-2009 | 442 | 452 | ND | ND | 13 | 11 |
103 | 100 | 3.80 | 0.70 | | OCTOBER -2009 | 452 | 446 | <0.85 | ND | 12 | 8 | 108 | 92 | 3.43 | ND | | NOVEMBER -2009 | 437 | 434 | ND
10. RE | ND | 11 | 9 | 110 | 105 | 2.49 | 0.99 | | DECEMBER -2009 | 433 | 407 | <0.85
====== | ND | 10 | 8 | 112 | 105 | 2.94 | 1.21 | | | 438 | ======
437 | 0.09 | 0.00 | 12 | 10 | =======
109 | 104 | 3.31 | 0.52 | | Average: | 438 | 437 | 6.63 | טט.ט | 12 | TA | 109 | 104 | 3.31 | v.52 | #### D. Influent and Effluent Graphs Graphs of monthly averages for permit parameters with measurable concentration averages. Where possible, the influent and effluent values of a given parameter have been included on the same graph so that removals and other relationships are readily apparent. Please note that many of the graphs are on expanded scales. That is, they may not go to zero concentrations but show, in magnified scale, that range of concentrations where variation takes place. This makes differences and some trends obvious that might normally not be noticed. However, it also provides the temptation to interpret minor changes or trends as being of more significance than they are. Frequent reference to the scales and the actual differences in concentrations is therefore necessary. ### PLWWTP Flows (mgd) 2009 Monthly Averages ## Total Suspended Solids (mg/L) 2009 Monthly Averages ## Volatile Suspended Solids (mg/L) 2009 Monthly Averages # Total Suspended Solids (%) Removal 2009 Monthly Averages at Point Loma # Total Suspended Solids (%) Removal 2009 Monthly Averages Systemwide # Biochemical Oxygen Demand 2009 Monthly Averages # Soluble Biochemical Oxygen Demand 2009 Monthly Averages # Biochemical Oxygen Demand (%) Removal 2009 Monthly Averages at Point Loma # Biochemical Oxygen Demand (%) Removal 2009 Monthly Averages Systemwide #### Settleable Solids (mL/L) 2009 Monthly Averages #### Hexane Extractable Material (mg/L) 2009 Monthly Averages #### Floatables (mg/L) 2009 Monthly Averages pН 2009 Monthly Averages Temperature ($^{\circ}$ C) 2009 Monthly Averages #### **Conductivity (umhos/cm)** 2009 Monthly Averages Total Dissolved Solids (mg/L) 2009 Monthly Averages #### Total Solids (mg/L) 2009 Monthly Averages #### Total Volatile Solids (mg/L) 2009 Monthly Averages #### Chemical Oxygen Demand (mg/L) 2009 Monthly Averages #### Alkalinity (mg/L) 2009 Monthly Averages ### Point Loma Wastewater Treatment Plant 2009 Monthly Averages - Alpha Radiation ## Point Loma Wastewater Treatment Plant 2009 Monthly Averages - Beta Radiation #### **Point Loma Wastewater Treatment Plant** 2009 Monthly Averages - Ammonia-N #### **Point Loma Wastewater Treatment Plant** 2009 Monthly Averages - Total Cyanides Antimony 2009 Monthly Averages #### Beryllium 2009 Monthly Averages Cadmium 2009 Monthly Averages Chromium 2009 Monthly Averages Copper 2009 Monthly Averages Influent Iron 2009 Monthly Averages Lead 2009 Monthly Averages Mercury 2009 Monthly Averages Nickel 2009 Monthly Averages Selenium 2009 Monthly Averages Silver 2009 Monthly Averages Thallium 2009 Monthly Averages Zinc 2009 Monthly Averages Month Aluminum 2009 Monthly Averages Barium 2009 Monthly Averages Boron 2009 Monthly Averages **Colbalt** 2009 Monthly Averages Influent Manganese 2009 Monthly Averages Molybdeum 2009 Monthly Averages **Purgeables** 2009 Monthly Averages Phenols 2009 Monthly Averages #### **Total Chlorinated Hydrocarbons** 2009 Monthly Averages #### **Base Neutrals** 2009 Monthly Averages Calcium 2009 Monthly Averages Magnesium 2009 Monthly Averages #### Calcium Hardness 2009 Monthly Averages #### Magnesium Hardness 2009 Monthly Averages #### Total Hardness 2009 Monthly Averages Lithium 2009 Monthly Averages Potassium 2009 Monthly Averages Sodium 2009 Monthly Averages Bromide 2009 Monthly Averages Chloride 2009 Monthly Averages Fluoride 2009 Monthly Averages Nitrate 2009 Monthly Averages O-Phosphate 2009 Monthly Averages Sulfate 2009 Monthly Averages #### E. Daily Values of Selected Parameters Daily values of selected parameters (e.g. TSS, Flow, TSS Removals, etc.) are tabulated and presented graphically; statistical summary information is provided. The straight horizontal lines on the graphs in this section represent annual means for the constituent. # Point Loma Wastewater Treatment Plant 2009 Daily Flows (mgd) # Point Loma Wastewater Treatment Plant 2009 Flows (mgd) | Day | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | | |---------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|---------| | 1 | 158.7 | 161.9 | 166.3 | 151.8 | 151.9 | 149.2 | 145.5 | 147.8 | 151.9 | 150.7 | 141.6 | 147.8 | = | | 2 | 163.4 | 158.7 | 165.6 | 150.3 | 152.3 | 145.9 | 147.2 | 146.1 | 149.4 | 154.5 | 142.5 | 144.7 | | | 3 | 168.5 | 160.6 | 159.8 | 151.5 | 148.5 | 142.7 | 146.4 | 150.5 | 148.7 | 145.1 | 140.0 | 146.8 | | | 4 | 166.8 | 162.7 | 160.6 | 159.3 | 154.7 | 146.3 | 148.6 | 139.2 | 150.4 | 162.1 | 142.5 | 148.3 | | | 5 | 168.8 | 161.4 | 160.4 | 153.7 | 150.8 | 147.5 | 143.9 | 154.1 | 151.1 | 151.8 | 141.3 | 149.9 | | | 6 | 164.4 | 170.6 | 159.3 | 149.6 | 149.6 | 149.8 | 144.5 | 147.5 | 146.1 | 147.5 | 144.4 | 145.2 | | | 7 | 169.7 | 209.5 | 157.7 | 156.7 | 148.6 | 151.3 | 148.9 | 148.0 | 159.1 | 146.2 | 144.4 | 199.2 | | | 8 | 168.6 | 198.7 | 159.8 | 146.0 | 150.4 | 155.1 | 143.3 | 147.1 | 154.8 | 147.1 | 147.0 | 173.1 | | | 9 | 160.9 | 205.9 | 160.7 | 151.6 | 147.2 | 141.2 | 146.7 | 147.0 | 141.1 | 148.5 | 146.9 | 165.2 | | | 10 | 162.9 | 195.7 | 157.0 | 151.2 | 145.1 | 144.3 | 148.7 | 147.1 | 152.3 | 148.4 | 139.1 | 158.5 | | | 11 | 164.2 | 176.2 | 156.0 | 153.1 | 148.6 | 147.9 | 143.2 | 146.0 | 147.4 | 148.3 | 142.5 | 160.1 | | | 12 | 162.6 | 178.5 | 159.0 | 150.4 | 149.7 | 149.0 | 145.6 | 156.7 | 152.7 | 146.4 | 139.3 | 163.0 | | | 13 | 159.7 | 171.0 | 157.2 | 157.8 | 146.8 | 148.3 | 150.2 | 152.3 | 149.3 | 146.9 | 143.5 | 182.3 | | | 14 | 159.5 | 175.8 | 157.5 | 153.2 | 150.3 | 148.0 | 148.0 | 150.5 | 145.7 | 147.1 | 144.1 | 165.1 | | | 15 | 158.3 | 168.1 | 158.1 | 150.4 | 145.6 | 151.8 | 144.3 | 149.8 | 144.1 | 149.4 | 144.1 | 165.1 | | | 16 | 156.9 | 195.3 | 158.9 | 153.0 | 147.6 | 145.7 | 147.5 | 150.3 | 144.6 | 146.1 | 146.1 | 159.8 | | | 17 | 164.1 | 187.9 | 158.0 | 152.6 | 152.8 | 152.3 | 147.7 | 148.6 | 142.9 | 148.0 | 141.5 | 160.0 | | | 18 | 156.9 | 194.7 | 158.4 | 157.2 | 151.5 | 150.1 | 146.2 | 147.3 | 147.4 | 147.2 | 146.7 | 153.6 | | | 19 | 164.1 | 178.0 | 159.4 | 147.6 | 151.5 | 148.3 | 146.9 | 144.9 | 146.9 | 147.2 | 139.1 | 156.0 | | | 20 | 162.6 | 174.4 | 161.6 | 154.4 | 148.6 | 151.3 | 151.8 | 148.4 | 152.0 | 149.5 | 142.3 | 148.7 | | | 21 | 163.0 | 174.6 | 159.4 | 148.7 | 147.4 | 146.5 | 145.0 | 147.6 | 148.3 | 141.9 | 145.0 | 151.6 | | | 22 | 160.7 | 165.5 | 163.1 | 155.7 | 147.1 | 144.5 | 141.3 | 151.7 | 153.8 | 147.3 | 145.6 | 153.1 | | | 23 | 163.1 | 169.5 | 161.4 | 149.8 | 146.1 | 153.4 | 141.0 | 147.9 | 150.0 | 147.1 | 145.8 | 153.8 | | | 24 | 163.0 | 171.9 | 152.0 | 148.6 | 142.6 | 147.5 | 146.8 | 149.6 | 149.8 | 148.9 | 139.1 | 154.5 | | | 25 | 169.5 | 161.7 | 152.0 | 150.9 | 148.7 | 146.9 | 149.3 | 146.9 | 150.1 | 150.5 | 144.2 | 137.1 | | | 26 | 161.2 | 161.8 | 154.1 | 150.0 | 150.9 | 141.9 | 147.4 | 143.4 | 146.2 | 149.5 | 143.1 | 140.8 | | | 27 | 161.3 | 167.8 | 151.6 | 153.6 | 147.9 | 148.1 | 153.0 | 143.6 | 150.4 | 151.1 | 132.9 | 145.0 | | | 28 | 165.2 | 166.3 | 153.5 | 147.0 | 151.7 | 146.2 | 151.5 | 145.8 | 145.2 | 145.1 | 142.2 | 151.0 | | | 29 | 159.9 | | 153.5 | 148.9 | 139.9 | 151.1 | 142.2 | 144.1 | 148.2 | 139.6 | 148.4 | 152.6 | | | 30 | 161.1 | | 155.4 | 151.9 | 149.7 | 147.5 | 143.9 | 152.7 | 158.0 | 142.2 | 148.4 | 149.8 | Annual | | 31 | 159.8 | | 150.8 | | 148.8 | | 146.1 | 155.0 | | 146.6 | | 158.0 | Summar | | Average | 162.9 | 175.9 | 158.0 | 151.9 | 148.8 | 148.0 | 146.5 | 148.3 | 149.3 | 148.0 | 143.1 | 156.1 | 153.1 | | Minimum | 156.9 | 158.7 | 150.8 | 146.0 | 139.9 | 141.2 | 141.0 | 139.2 | 141.1 | 139.6 | 132.9 | 137.1 | 132.9 | | Maximum | 169.7 | 209.5 | 166.3 | 159.3 | 154.7 | 155.1 | 153.0 | 156.7 | 159.1 | 162.1 | 148.4 | 199.2 | 209.5 | | Total | 5049.1 | 4924.7 | 4898.1 | 4556.3 | 4612.8 | 4439.4 | 4542.7 | 4597.5 | 4477.7 | 4588.0 | 4293.2 | 4839.6 | 55819.0 | ### Point Loma Wastewater Treatment Plant 2009 Total Suspended Solids #### Point Loma Wastewater Treatment Plant #### 2009 Total Suspended Solids (mg/L) | | Ja | n | Fe | eb | M | [ar | A | | M | | ı | ın | Jı | | ı | ug | Se | ер | 0 | ct | N | ov | D | ec | | | | |-----|------------|----|-----|----------|------------|----------|-----|----------|------------|----------|------------|----------|-----------------------------------|----|------------|----------|------------|----------|------------|----------|------------|----------|------------|----------|-----|-------|--------| | Day | | | Inf | | | | Inf | | | • | | | | | | • | Inf | | | | | Eff | | | | | | | | 295 | | | 37 | 246 | 33 | 301 | 26 | 273 | 28 | 320 | 29 | 370 | 34 | 300 | 31 | 368 | 36 | 260 | 28 | 316 | 31 | 244 | 34 | | | | | | 272 | | | 35 | 332 | 29 | 294 | 25 | 280 | 30 | 373 | 32 | 357 | 29 | 295 | 34 | 347 | 33 | 323 | 21 | 339 | 23 | 308 | 33 | | | | | 3 | 305 | 33 | 300 | 32 | 284 | 26 | 298 | 30 | 299 | 36 | 379 | 34 | 318 | 29 | 340 | 36 | 311 | 36 | 276 | 24 | 302 | 23 | 336 | 33 | | | | | | 265 | | | 31 | 268 | 22 | 310 | 31 | 292 | 33 | 367 | 43 | 314 | 29 | 257 | 52 | 297 | 33 | 274 | 27 | 325 | 25 | 357 | 30 | | | | | 5 | 270 | 37 | 337 | 32 | 267 | 24 | 284 | 30 | 306 | 43 | 336 | 27 | 307 | 33 | 196 | 33 | 306 | 32 | 290 | 29 | 225 | 29 | 408 | 38 | | | | | 6 | 247 | 32 | 274 | 27 | 266 | 25 | 304 | 31 | 381 | 50 | 309 | 31 | 384 | 31 | 332 | 45 | 303 | 28 | 304 | 25 | 314 | 24 | 363 | 38 | | | | | 7 | 269 | 29 | 254 | 28 | 259 | 30 | 340 | 28 | 342 | 42 | 327 | 30 | 305 | 31 | 323 | 31 | 303 | 37 | 293 | 27 | 278 | 28 | 236 | 48 | | | | | 8 | 298 | 30 | 237 | 29 | 271 | 31 | 357 | 34 | 323 | 39 | 350 | 34 | 328 | 28 | 309 | 35 | 366 | 34 |
326 | 28 | 295 | 34 | 332 | 32 | | | | | 9 | 276 | 36 | 226 | 36 | 296 | 27 | 350 | 29 | 277 | 28 | 390 | 31 | 345 | 27 | 273 | 34 | 502 | 35 | 290 | 37 | 316 | 34 | 226 | 33 | | | | | 10 | 258 | 30 | 243 | 26 | 302 | 30 | 335 | 31 | 267 | 35 | 348 | 35 | 289 | 30 | 305 | 36 | 347 | 32 | 275 | 26 | 350 | 26 | 258 | 33 | | | | | 11 | 288 | 37 | 254 | 25 | 286 | 27 | 291 | 29 | 358 | 35 | 334 | 27 | 284 | 29 | 325 | 29 | 352 | 29 | 268 | 28 | 302 | 32 | 300 | 31 | | | | | 12 | 277 | 31 | 261 | 26 | 298 | 41 | 295 | 28 | 285 | 29 | 312 | 26 | 295 | 28 | 350 | 31 | 311 | 32 | 368 | 31 | 265 | 25 | 298 | 33 | | | | | 13 | 341 | 32 | 248 | 26 | 279 | 31 | 313 | 34 | 296 | 28 | 296 | 27 | 302 | 32 | 338 | 31 | 285 | 34 | 290 | 32 | 296 | 29 | 224 | 39 | | | | | 14 | 271 | | 250 | 30 | 265 | 32 | 325 | 32 | 342 | 27 | 288 | 28 | 337 | 33 | 312 | 39 | 264 | 34 | 286 | 33 | 289 | 26 | 300 | 35 | | | | | | 258 | | 259 | 32 | 312 | 34 | 332 | 29 | 342 | 37 | 336 | 29 | 350 | 26 | 342 | 37 | 317 | 32 | 292 | 28 | 235 | 34 | 289 | 32 | | | | | | 264 | | | 49 | 325 | 39 | 338 | 30 | 351 | 28 | 328 | 24 | 295 | 30 | 307 | 36 | 312 | 28 | 340 | 27 | 291 | 34 | 313 | 34 | | | | | | 245 | | | 36 | 332 | 33 | 312 | 27 | 349 | 38 | 327 | 22 | 287 | 26 | 340 | 35 | 321 | 33 | 300 | 28 | 458 | 31 | 234 | 34 | | | | | | 234 | | | 25 | 333 | 31 | 277 | 25 | 352 | 25 | 306 | 37 | 276 | 26 | 312 | 26 | 300 | 26 | 367 | 34 | 330 | 25 | 283 | 36 | | | | | | | | 213 | 23 | 327 | 31 | 290 | 32 | 358 | 30 | 306 | 23 | 282 | 32 | 393 | 30 | 313 | 32 | 392 | 37 | 324 | 35 | 319 | 37 | | | | | | 251 | | | 19 | 282 | 29 | 322 | 34 | 362 | 29 | 289 | 33 | 272 | 26 | 350 | 31 | 294 | 38 | 344 | 39 | 276 | 24 | 299 | 35 | | | | | | 264 | | | 22 | 279 | 27 | 354 | 29 | 367 | 30 | 287 | 30 | 338 | 37 | 305 | 28 | 327 | 38 | 366 | 42 | 292 | 28 | 312 | 38 | | | | | | 306 | | | 24 | 261 | 32 | 333 | 28 | 307 | 24 | 250 | 31 | 353 | 36 | 274 | 31 | 400 | 33 | 351 | 34 | 286 | 35 | 286 | 37 | | | | | _ | 301
290 | | 258 | 25
21 | 344
325 | 29
29 | 386 | 32
23 | 303
321 | 30
27 | 356
348 | 30 | 281 | 33 | 562
323 | 32 | 357
326 | 44
32 | 316
266 | 30 | 324
301 | 43
37 | 313
290 | 36
35 | | | | | | 263 | | | 25 | 353 | 29 | 296 | 25 | 397 | 32 | 344 | 32
26 | 296316 | 31 | 330 | 36
31 | 297 | 29 | 308 | 32
36 | 309 | 37 | 290 | 31 | | | | | | 260 | | | 25 | 382 | 28 | 290 | 29 | 306 | 35 | 367 | 27 | 308 | 35 | 338 | 46 | 289 | 23 | 290 | 34 | 334 | 46 | 316 | 33 | | | | | | 293 | | 266 | 27 | 385 | 31 | 296 | 33 | 352 | 27 | 342 | 36 | 308 | 34 | 358 | 34 | 242 | 35 | 302 | 27 | 308 | 37 | 281 | 41 | | | | | | 289 | | 246 | 26 | 317 | 34 | 340 | 28 | 287 | 28 | 327 | 30 | 339 | 34 | 325 | 33 | 298 | 32 | 343 | 29 | 326 | 34 | 310 | 57 | | | | | | 274 | 30 | | 20 | 300 | 29 | 321 | 30 | 346 | 27 | 332 | 27 | 332 | 37 | 338 | 31 | 344 | 31 | 287 | 32 | 271 | 38 | 309 | 39 | | | | | | 287 | 35 | | | 321 | 39 | 321 | 29 | 328 | 23 | 338 | 36 | 342 | 39 | 316 | 34 | 276 | 31 | 289 | 32 | 310 | 43 | 360 | 35 | Sun | nmary | ٦ | | | 282 | 35 | | | 306 | 30 | | | 287 | 28 | | | 302 | 35 | 327 | 35 | | | 286 | 32 | | | 302 | 40 | Inf | Eff |] | | Avg | 279 | 31 | 263 | 29 | 303 | 30 | 317 | 29 | 324 | 32 | 330 | 30 | 317 | 31 | 326 | 34 | 323 | 33 | 308 | 31 | 306 | 32 | 300 | 36 | 284 | | 9] | | Min | | | | 19 | 246 | 22 | 277 | 23 | 267 | 23 | 250 | 22 | 272 | 26 | 196 | 26 | 242 | 23 | 260 | 21 | 225 | 23 | 224 | 30 | 196 | | | | Max | 369 | 37 | 337 | 49 | 385 | 41 | 386 | 34 | 397 | 50 | 390 | 43 | 384 | 39 | 562 | 52 | 502 | 44 | 392 | 42 | 458 | 46 | 408 | 57 | 562 | 2 57 | \Box | ## Point Loma Wastewater Treatment Plant 2009 TSS Removal (%) at Point Loma #### Point Loma Wastewater Treatment Plant #### 2009 Total Suspended Solids Removals (%) at Point Loma | | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | | |-----|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------| | Day | % Rem | | 1 | 90 | 87 | 87 | 91 | 90 | 91 | 91 | 90 | 90 | 89 | 90 | 86 | | | 2 | 89 | 89 | 91 | 92 | 89 | 91 | 92 | 89 | 91 | 94 | 93 | 89 | | | 3 | 89 | 89 | 91 | 90 | 88 | 91 | 91 | 89 | 88 | 91 | 92 | 90 | | | 4 | 86 | 89 | 92 | 90 | 89 | 88 | 91 | 80 | 89 | 90 | 92 | 92 | | | 5 | 86 | 91 | 91 | 89 | 86 | 92 | 89 | 83 | 90 | 90 | 87 | 91 | | | 6 | 87 | 90 | 91 | 90 | 87 | 90 | 92 | 86 | 91 | 92 | 92 | 90 | | | 7 | 89 | 89 | 88 | 92 | 88 | 91 | 90 | 90 | 88 | 91 | 90 | 80 | | | 8 | 90 | 88 | 89 | 91 | 88 | 90 | 92 | 89 | 91 | 91 | 89 | 90 | | | 9 | 87 | 84 | 91 | 92 | 90 | 92 | 92 | 88 | 93 | 87 | 89 | 85 | | | 10 | 88 | 89 | 90 | 91 | 87 | 90 | 90 | 88 | 91 | 91 | 93 | 87 | | | 11 | 87 | 90 | 91 | 90 | 90 | 92 | 90 | 91 | 92 | 90 | 89 | 90 | | | 12 | 89 | 90 | 86 | 91 | 90 | 92 | 91 | 91 | 90 | 92 | 91 | 89 | | | 13 | 91 | 90 | 89 | 89 | 91 | 91 | 89 | 91 | 88 | 89 | 90 | 83 | | | 14 | 90 | 88 | 88 | 90 | 92 | 90 | 90 | 88 | 87 | 89 | 91 | 88 | | | 15 | 90 | 88 | 89 | 91 | 89 | 91 | 93 | 89 | 90 | 90 | 86 | 89 | | | 16 | 90 | 81 | 88 | 91 | 92 | 93 | 90 | 88 | 91 | 92 | 88 | 89 | | | 17 | 90 | 87 | 90 | 91 | 89 | 93 | 91 | 90 | 90 | 91 | 93 | 86 | | | 18 | 86 | 91 | 91 | 91 | 93 | 88 | 91 | 92 | 91 | 91 | 92 | 87 | | | 19 | 92 | 89 | 91 | 89 | 92 | 93 | 89 | 92 | 90 | 91 | 89 | 88 | | | 20 | 90 | 93 | 90 | 89 | 92 | 89 | 90 | 91 | 87 | 89 | 91 | 88 | | | 21 | 92 | 91 | 90 | 92 | 92 | 90 | 89 | 91 | 88 | 89 | 90 | 88 | | | 22 | 90 | 90 | 88 | 92 | 92 | 88 | 90 | 89 | 92 | 90 | 88 | 87 | | | 23 | 91 | 90 | 92 | 92 | 90 | 92 | 88 | 94 | 88 | 91 | 87 | 89 | | | 24 | 90 | 92 | 91 | 93 | 92 | 91 | 90 | 89 | 90 | 88 | 88 | 88 | | | 25 | 89 | 90 | 92 | 92 | 92 | 92 | 90 | 91 | 90 | 88 | 88 | 90 | | | 26 | 89 | 91 | 93 | 90 | 89 | 93 | 89 | 86 | 92 | 88 | 86 | 90 | | | 27 | 90 | 90 | 92 | 89 | 92 | 90 | 89 | 91 | 86 | 91 | 88 | 85 | | | 28 | 89 | 89 | 89 | 92 | 90 | 91 | 90 | 90 | 89 | 92 | 90 | 82 | | | 29 | 89 | | 90 | 91 | 92 | 92 | 89 | 91 | 91 | 89 | 86 | 87 | | | 30 | 88 | | 88 | 91 | 93 | 89 | 89 | 89 | 89 | 89 | 86 | 90 | Annu | | 31 | 88 | | 90 | | 90 | | 88 | 89 | | 89 | | 87 | Summa | | Avg | 89 | 89 | 90 | 91 | 90 | 91 | 90 | 89 | 90 | 90 | 90 | 88 | 90 | | Min | 86 | 81 | 86 | 89 | 86 | 88 | 88 | 80 | 86 | 87 | 86 | 80 | 80 | | Max | 92 | 93 | 93 | 93 | 93 | 93 | 93 | 94 | 93 | 94 | 93 | 92 | 94 | ### Point Loma Wastewater Treatment Plant 2009 TSS Removal (%) Systemwide # Point Loma Wastewater Treatment Plant # 2009 Total Suspended Solids Removals (%) Systemwide | | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | | |-----|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|---------| | Day | % Rem | | 1 | 90 | 87 | 88 | 92 | 91 | 91 | 91 | 91 | 91 | 90 | 91 | 87 | | | 2 | 88 | 88 | 92 | 92 | 90 | 92 | 92 | 90 | 91 | 94 | 94 | 90 | | | 3 | 88 | 89 | 92 | 91 | 89 | 91 | 91 | 90 | 89 | 92 | 93 | 89 | | | 4 | 85 | 89 | 93 | 91 | 90 | 89 | 91 | 82 | 90 | 91 | 93 | 92 | | | 5 | 86 | 91 | 92 | 90 | 87 | 93 | 89 | 85 | 90 | 91 | 89 | 51 | | | 6 | 87 | 91 | 92 | 91 | 88 | 90 | 92 | 87 | 91 | 93 | 93 | 77 | | | 7 | 84 | 89 | 90 | 93 | 88 | 91 | 90 | 91 | 89 | 92 | 91 | 74 | | | 8 | 89 | 88 | 90 | 91 | 89 | 91 | 92 | 90 | 91 | 92 | 83 | 91 | | | 9 | 87 | 86 | 92 | 92 | 91 | 92 | 93 | 89 | 93 | 90 | 90 | 87 | | | 10 | 89 | 90 | 91 | 91 | 88 | 90 | 90 | 89 | 91 | 91 | 92 | 88 | | | 11 | 88 | 91 | 92 | 91 | 91 | 93 | 91 | 92 | 92 | 91 | 90 | 91 | | | 12 | 90 | 91 | 88 | 91 | 90 | 92 | 91 | 92 | 91 | 92 | 92 | 90 | | | 13 | 91 | 90 | 90 | 90 | 91 | 91 | 90 | 91 | 89 | 90 | 91 | 84 | | | 14 | 91 | 89 | 89 | 91 | 93 | 91 | 90 | 88 | 88 | 90 | 92 | 89 | | | 15 | 90 | 89 | 90 | 92 | 90 | 92 | 93 | 90 | 91 | 91 | 87 | 90 | | | 16 | 91 | 82 | 89 | 92 | 92 | 93 | 91 | 89 | 92 | 93 | 87 | 90 | | | 17 | 91 | 88 | 91 | 92 | 90 | 93 | 92 | 90 | 91 | 90 | 92 | 87 | | | 18 | 87 | 91 | 91 | 92 | 77 | 89 | 91 | 92 | 92 | 87 | 93 | 89 | | | 19 | 91 | 90 | 88 | 90 | 89 | 93 | 90 | 93 | 91 | 91 | 90 | 89 | | | 20 | 91 | 93 | 90 | 90 | 91 | 89 | 91 | 92 | 88 | 89 | 92 | 89 | | | 21 | 92 | 92 | 91 | 92 | 89 | 90 | 88 | 92 | 87 | 88 | 91 | 89 | | | 22 | 91 | 91 | 88 | 92 | 92 | 86 | -27 | 90 | 92 | 91 | 89 | 88 | | | 23 | 92 | 91 | 90 | 92 | 91 | 91 | 86 | 95 | 88 | 91 | 88 | 90 | | | 24 | 90 | 93 | 91 | 93 | 92 | 91 | 90 | 89 | 91 | 89 | 89 | 89 | | | 25 | 89 | 91 | 89 | 92 | 92 | 93 | 90 | 91 | 91 | 89 | 89 | 91 | | | 26 | 90 | 92 | 92 | 91 | 89 | 93 | 89 | 87 | 93 | 89 | 87 | 91 | | | 27 | 91 | 91 | 91 | 89 | 93 | 90 | 89 | 91 | 86 | 92 | 88 | 87 | | | 28 | 90 | 91 | 90 | 92 | 91 | 91 | 91 | 90 | 90 | 92 | 91 | 83 | | | 29 | 89 | | 91 | 91 | 92 | 92 | 89 | 92 | 91 | 90 | 87 | 89 | | | 30 | 89 | | 89 | 92 | 93 | 90 | 89 | 90 | 90 | 90 | 87 | 91 | Annual | | 31 | 89 | | 91 | _ | 91 | - | 90 | 90 | | 90 | | 88 | Summary | | Avg | 89 | 90 | 90 | 91 | 90 | 91 | 87 | 90 | 90 | 91 | 90 | 87 | 90 | | Min | 84 | 82 | 88 | 89 | 77 | 86 | -27 | 82 | 86 | 87 | 83 | 51 | -27 | | Max | 92 | 93 | 93 | 93 | 93 | 93 | 93 | 95 | 93 | 94 | 94 | 92 | 95 | # Point Loma Wastewater Treatment Plant 2009 Biochemical Oxygen Demand ## Point Loma Wastewater Treatment Plant # 2009 Biochemical Oxygen Demand (mg/L) | | Ja | n | Fel | b | M | ar | A | pr | M | ay | Ju | ın | Jı | ıl | A | ug | Se | ер | О | ct | N | ov | De | ec | | | |-----| | Day | Inf | Eff | | | 1 | 278 | 100 | 286 | 116 | 269 | 100 | 282 | 91 | 271 | 96 | 277 | 96 | 315 | 86 | 266 | 101 | 289 | 83 | 266 | 88 | 330 | 112 | 254 | 75 | | | | 2 | 261 | 100 | 320 | 112 | 283 | 99 | 282 | 90 | 270 | 103 | 321 | 95 | 283 | 78 | 298 | 98 | 254 | 71 | 299 | 99 | 355 | 123 | 306 | 108 | | | | 3 | 225 | 98 | 273 | 104 | 281 | 75 | 286 | 90 | 302 | 122 | 317 | 97 | 282 | 91 | 349 | 121 | 270 | 92 |
278 | 106 | 322 | 94 | 324 | 98 | | | | 4 | 256 | 102 | 282 | 109 | 282 | 94 | 272 | 94 | 294 | 109 | 305 | 115 | 266 | 88 | 305 | 107 | 273 | 98 | 301 | 110 | 317 | 93 | 354 | 97 | | | | 5 | 257 | 102 | 298 | 99 | 284 | 102 | 295 | 99 | 306 | 127 | 309 | 100 | 307 | 97 | 240 | 105 | 277 | 90 | 297 | 94 | 280 | 100 | 381 | 125 | | | | 6 | 245 | 96 | 242 | 89 | 277 | 107 | 309 | 105 | 288 | 114 | 265 | 95 | 272 | 86 | 297 | 118 | 283 | 85 | 284 | 94 | 293 | 105 | 339 | 112 | | | | 7 | 267 | 95 | 224 | 90 | 263 | 113 | 296 | 88 | 284 | 95 | 331 | 98 | 290 | 94 | 305 | 113 | 251 | 88 | 302 | 98 | 277 | 102 | 260 | 95 | | | | 8 | 317 | 101 | 244 | 97 | 288 | 109 | 327 | 89 | 276 | 128 | 330 | 113 | 262 | 79 | 277 | 107 | 267 | 87 | 307 | 100 | 317 | 111 | 248 | 89 | | | | 9 | 267 | 101 | 218 | 87 | 295 | 100 | 294 | 81 | 283 | 106 | 325 | 105 | 285 | 86 | 282 | 100 | 383 | 98 | 304 | 110 | 331 | 110 | 241 | 107 | | | | 10 | 263 | 101 | 223 | 86 | 296 | 90 | 294 | 97 | 305 | 102 | 312 | 98 | 273 | 82 | 321 | 120 | 315 | 98 | 265 | 100 | 332 | 100 | 248 | 97 | | | | 11 | 270 | 104 | 236 | 82 | 295 | 92 | 263 | 89 | 275 | 102 | 307 | 94 | 260 | 97 | 285 | 105 | 359 | 102 | 287 | 89 | 318 | 98 | 247 | 99 | | | | 12 | 276 | 103 | 255 | 87 | 300 | 105 | 299 | 94 | 299 | 98 | 276 | 90 | 278 | 117 | 298 | 93 | 285 | 105 | 298 | 117 | 286 | 95 | 232 | 102 | | | | 13 | 329 | 101 | 262 | 98 | 294 | 109 | 299 | 96 | 279 | 89 | 290 | 98 | 267 | 87 | 321 | 108 | 295 | 109 | 309 | 100 | 279 | 106 | 220 | 98 | | | | 14 | 278 | 98 | 226 | 90 | 227 | 92 | 294 | 103 | 304 | 95 | 301 | 102 | 272 | 84 | 358 | 103 | 281 | 101 | 319 | 94 | 285 | 105 | 230 | 102 | | | | 15 | 306 | 112 | 244 | 102 | 313 | 116 | 276 | 88 | 285 | 101 | 319 | 104 | 316 | 92 | 328 | 99 | 299 | 88 | 298 | 92 | 312 | 107 | 281 | 98 | | | | 16 | 271 | 105 | 279 | 96 | 288 | 105 | 295 | 89 | 290 | 99 | 322 | 118 | 281 | 92 | 315 | 112 | 292 | 89 | 282 | 96 | 348 | 110 | 278 | 98 | | | | 17 | 243 | 108 | 248 | 91 | 339 | 124 | 272 | 86 | 288 | 111 | 309 | 95 | 277 | 92 | 342 | 114 | 311 | 102 | 297 | 100 | 455 | 111 | 233 | 109 | | | | 18 | 258 | 114 | 230 | 83 | 307 | 108 | 269 | 90 | 295 | 97 | 325 | 101 | 257 | 96 | 339 | 110 | 264 | 92 | 327 | 120 | 301 | 93 | 302 | 139 | | | | 19 | 280 | 121 | 243 | 91 | 289 | 96 | 284 | 102 | 317 | 91 | 305 | 104 | 263 | 87 | 291 | 82 | 283 | 96 | 366 | 106 | 316 | 112 | 270 | 114 | | | | 20 | 277 | 100 | 277 | 115 | 279 | 104 | 308 | 97 | 342 | 98 | 275 | 101 | 282 | 85 | 289 | 80 | 294 | 109 | 356 | 105 | 274 | 100 | 299 | 111 | | | | 21 | 283 | 92 | 226 | 90 | 263 | 96 | 315 | 100 | 306 | 93 | 304 | 101 | 326 | 115 | 303 | 109 | 302 | 120 | 338 | 114 | 254 | 97 | 313 | 123 | | | | 22 | 281 | 99 | 245 | 96 | 258 | 94 | 299 | 94 | 279 | 100 | 263 | 90 | 381 | 115 | 299 | 102 | 364 | 100 | 361 | 101 | 306 | 105 | 317 | 116 | | | | 23 | 278 | 105 | 275 | 98 | 314 | 98 | 374 | 105 | 283 | 104 | 363 | 100 | 321 | 105 | 329 | 102 | 340 | 105 | 276 | 95 | 313 | 120 | 315 | 110 | | | | 24 | 273 | 98 | 261 | 102 | 312 | 92 | 300 | 96 | 297 | 92 | 306 | 86 | 305 | 116 | 280 | 103 | 276 | 101 | 290 | 98 | 306 | 109 | 294 | 114 | | | | 25 | 251 | 93 | 274 | 98 | 318 | 88 | 261 | 89 | 299 | 96 | 317 | 86 | 291 | 100 | 267 | 75 | 284 | 93 | 345 | 112 | 283 | 110 | 279 | 96 | | | | 26 | 257 | 91 | 282 | 105 | 330 | 93 | 285 | 99 | 299 | 117 | 345 | 80 | 309 | 98 | 272 | 78 | 278 | 100 | 282 | 116 | 319 | 121 | 279 | 96 | | | | 27 | 278 | 100 | 269 | 108 | 330 | 101 | 281 | 99 | 293 | 100 | 281 | 87 | 317 | 97 | 275 | 83 | 275 | 94 | 318 | 98 | 348 | 125 | 294 | 111 | | | | 28 | 259 | 96 | 249 | 107 | 299 | 102 | 295 | 96 | 284 | 103 | 305 | 83 | 317 | 99 | 287 | 104 | 312 | 106 | 324 | 100 | 279 | 101 | 300 | 156 | | | | 29 | 281 | 89 | | | 279 | 98 | 274 | 90 | 286 | 92 | 330 | 103 | 324 | 106 | 289 | 106 | 318 | 96 | 284 | 102 | 279 | 100 | 308 | 119 | | | | 30 | 301 | 104 | | | 269 | 99 | 283 | 105 | 277 | 91 | 330 | 103 | 292 | 107 | 284 | 99 | 310 | 110 | 272 | 96 | 300 | 113 | 407 | 123 | Sum | | | 31 | 278 | 102 | | | 281 | 99 | | | 295 | 98 | | | 276 | 92 | 265 | 94 | | | 255 | 104 | | | 289 | 147 | Inf | Eff | | Avg | 272 | 101 | 257 | 97 | 291 | 100 | 292 | 94 | 292 | 102 | 309 | 98 | 292 | 95 | 300 | 102 | 296 | 97 | 304 | 102 | 311 | 106 | 288 | 108 | 295 | 100 | | Min | 225 | 89 | 218 | 82 | 227 | 75 | 261 | 81 | 270 | 89 | 263 | 80 | 257 | 78 | 240 | 75 | 251 | 71 | 255 | 88 | 254 | 93 | 220 | 75 | 220 | 71 | | Max | 329 | 121 | 320 | 116 | 339 | 124 | 374 | 105 | 342 | 128 | 363 | 118 | 381 | 117 | 358 | 121 | 383 | 120 | 366 | 120 | 455 | 125 | 407 | 156 | 455 | 156 | # Point Loma Wastwater Treatment 2009 BOD Removal (%) at Point Loma Point Loma Wastewater Treatment Plant #### 2009 Biochemical Oxygen Demand Removals (%) at Point Loma | | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | | |-----|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|----------------| | Day | % Rem _ | | 1 | 64 | 59 | 63 | 68 | 65 | 65 | 73 | 62 | 71 | 67 | 66 | 70 | | | 2 | 62 | 65 | 65 | 68 | 62 | 70 | 72 | 67 | 72 | 67 | 65 | 65 | | | 3 | 56 | 62 | 73 | 69 | 60 | 69 | 68 | 65 | 66 | 62 | 71 | 70 | | | 4 | 60 | 61 | 67 | 65 | 63 | 62 | 67 | 65 | 64 | 63 | 71 | 73 | | | 5 | 60 | 67 | 64 | 66 | 58 | 68 | 68 | 56 | 68 | 68 | 64 | 67 | | | 6 | 61 | 63 | 61 | 66 | 60 | 64 | 68 | 60 | 70 | 67 | 64 | 67 | | | 7 | 64 | 60 | 57 | 70 | 67 | 70 | 68 | 63 | 65 | 68 | 63 | 63 | | | 8 | 68 | 60 | 62 | 73 | 54 | 66 | 70 | 61 | 67 | 67 | 65 | 64 | | | 9 | 62 | 60 | 66 | 72 | 63 | 68 | 70 | 65 | 74 | 64 | 67 | 56 | | | 10 | 62 | 61 | 70 | 67 | 67 | 69 | 70 | 63 | 69 | 62 | 70 | 61 | | | 11 | 61 | 65 | 69 | 66 | 63 | 69 | 63 | 63 | 72 | 69 | 69 | 60 | | | 12 | 63 | 66 | 65 | 69 | 67 | 67 | 58 | 69 | 63 | 61 | 67 | 56 | | | 13 | 69 | 63 | 63 | 68 | 68 | 66 | 67 | 66 | 63 | 68 | 62 | 55 | | | 14 | 65 | 60 | 60 | 65 | 69 | 66 | 69 | 71 | 64 | 71 | 63 | 56 | | | 15 | 63 | 58 | 63 | 68 | 65 | 67 | 71 | 70 | 71 | 69 | 66 | 65 | | | 16 | 61 | 66 | 64 | 70 | 66 | 63 | 67 | 64 | 70 | 66 | 68 | 65 | | | 17 | 56 | 63 | 63 | 68 | 62 | 69 | 67 | 67 | 67 | 66 | 76 | 53 | | | 18 | 56 | 64 | 65 | 67 | 67 | 69 | 63 | 68 | 65 | 63 | 69 | 54 | | | 19 | 57 | 63 | 67 | 64 | 71 | 66 | 67 | 72 | 66 | 71 | 65 | 58 | | | 20 | 64 | 58 | 63 | 69 | 71 | 63 | 70 | 72 | 63 | 71 | 64 | 63 | | | 21 | 67 | 60 | 63 | 68 | 70 | 67 | 65 | 64 | 60 | 66 | 62 | 61 | | | 22 | 65 | 61 | 64 | 69 | 64 | 66 | 70 | 66 | 73 | 72 | 66 | 63 | | | 23 | 62 | 64 | 69 | 72 | 63 | 73 | 67 | 69 | 69 | 66 | 62 | 65 | | | 24 | 64 | 61 | 71 | 68 | 69 | 72 | 62 | 63 | 63 | 66 | 64 | 61 | | | 25 | 63 | 64 | 72 | 66 | 68 | 73 | 66 | 72 | 67 | 68 | 61 | 66 | | | 26 | 65 | 63 | 72 | 65 | 61 | 77 | 68 | 71 | 64 | 59 | 62 | 66 | | | 27 | 64 | 60 | 69 | 65 | 66 | 69 | 69 | 70 | 66 | 69 | 64 | 62 | | | 28 | 63 | 57 | 66 | 68 | 64 | 73 | 69 | 64 | 66 | 69 | 64 | 48 | | | 29 | 68 | | 65 | 67 | 68 | 69 | 67 | 63 | 70 | 64 | 64 | 61 | | | 30 | 65 | | 63 | 63 | 67 | 69 | 63 | 65 | 65 | 65 | 62 | 70 | | | 31 | 63 | | 65 | | 67 | | 67 | 65 | | 59 | | 49 | Annual Summary | | Avg | 62.7 | 62.0 | 65.4 | 67.6 | 64.9 | 68.1 | 67.3 | 65.8 | 67.1 | 66.2 | 65.5 | 61.7 | 65.3 | | Min | 55.5 | 57.0 | 57.0 | 62.9 | 53.5 | 62.3 | 57.8 | 56.3 | 60.3 | 58.9 | 61.1 | 48.0 | 48.0 | | Max | 69.3 | 66.8 | 73.3 | 72.7 | 71.3 | 76.8 | 72.7 | 72.3 | 74.4 | 72.0 | 75.6 | 72.6 | 76.8 | # Point Loma Wastewater Treatment Plant 2009 BOD Removal (%) Systemwide # Point Loma Wastewater Treatment Plant **2009 Biochemical Oxygen Demand Removals (%) Systemwide** | | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | | |-----|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|---------| | Day | % Rem | | 1 | 65 | 61 | 67 | 72 | 68 | 68 | 76 | 66 | 74 | 70 | 70 | 73 | | | 2 | 64 | 64 | 69 | 71 | 66 | 72 | 74 | 70 | 75 | 70 | 69 | 68 | | | 3 | 57 | 64 | 76 | 71 | 63 | 72 | 69 | 68 | 69 | 66 | 73 | 70 | | | 4 | 62 | 64 | 71 | 69 | 66 | 65 | 70 | 68 | 68 | 67 | 74 | 73 | | | 5 | 63 | 69 | 67 | 70 | 62 | 70 | 71 | 60 | 71 | 70 | 69 | 61 | | | 6 | 63 | 66 | 65 | 69 | 63 | 68 | 72 | 62 | 71 | 70 | 66 | 65 | | | 7 | 64 | 62 | 61 | 73 | 69 | 73 | 71 | 66 | 69 | 70 | 66 | 58 | | | 8 | 69 | 63 | 66 | 75 | 58 | 68 | 74 | 65 | 70 | 71 | 53 | 67 | | | 9 | 65 | 63 | 70 | 74 | 67 | 69 | 73 | 68 | 76 | 67 | 64 | 59 | | | 10 | 64 | 63 | 73 | 70 | 71 | 71 | 72 | 67 | 71 | 67 | 68 | 64 | | | 11 | 64 | 68 | 72 | 69 | 66 | 73 | 67 | 67 | 74 | 73 | 73 | 64 | | | 12 | 65 | 68 | 68 | 71 | 70 | 71 | 63 | 72 | 67 | 65 | 71 | 61 | | | 13 | 71 | 65 | 66 | 70 | 71 | 69 | 70 | 69 | 67 | 71 | 64 | 59 | | | 14 | 67 | 63 | 63 | 68 | 71 | 69 | 71 | 74 | 67 | 73 | 67 | 60 | | | 15 | 66 | 62 | 67 | 69 | 68 | 71 | 73 | 72 | 73 | 73 | 69 | 68 | | | 16 | 64 | 69 | 67 | 72 | 69 | 67 | 70 | 68 | 72 | 70 | 67 | 67 | | | 17 | 60 | 65 | 68 | 71 | 65 | 72 | 70 | 70 | 70 | 66 | 73 | 58 | | | 18 | 60 | 66 | 67 | 69 | 56 | 71 | 67 | 70 | 69 | 62 | 73 | 58 | | | 19 | 58 | 65 | 65 | 68 | 69 | 69 | 70 | 75 | 70 | 73 | 68 | 63 | | | 20 | 66 | 59 | 65 | 70 | 71 | 67 | 73 | 74 | 68 | 72 | 67 | 66 | | | 21 | 70 | 63 | 66 | 70 | 67 | 70 | 60 | 67 | 62 | 65 | 66 | 64 | | | 22 | 67 | 65 | 66 | 71 | 67 | 67 | 27 | 69 | 73 | 73 | 69 | 66 | | | 23 | 65 | 66 | 66 | 73 | 66 | 74 | 63 | 71 | 72 | 69 | 66 | 68 | | | 24 | 66 | 64 | 72 | 70 | 71 | 74 | 65 | 67 | 67 | 70 | 68 | 66 | | | 25 | 65 | 67 | 57 | 69 | 70 | 75 | 69 | 75 | 70 | 70 | 64 | 70 | | | 26 | 68 | 65 | 70 | 69 | 64 | 79 | 71 | 74 | 67 | 63 | 66 | 70 | | | 27 | 67 | 63 | 68 | 67 | 69 | 71 | 72 | 72 | 69 | 71 | 66 | 66 | | | 28 | 66 | 61 | 68 | 70 | 67 | 75 | 71 | 67 | 69 | 72 | 67 | 52 | | | 29 | 70 | | 69 | 70 | 70 | 71 | 68 | 67 | 72 | 68 | 68 | 65 | | | 30 | 68 | | 68 | 65 | 70 | 72 | 66 | 68 | 69 | 69 | 65 | 72 | Annual | | 31 | 66 | | 68 | | 70 | | 70 | 67 | | 64 | | 54 | Summary | | Avg | 64.6 | 64.3 | 67.2 | 70.3 | 66.6 |
70.6 | 68.2 | 69.0 | 70.0 | 69.3 | 67.6 | 64.4 | 67.7 | | Min | 57.1 | 59.1 | 56.7 | 65.4 | 56.2 | 65.0 | 27.1 | 60.3 | 62.2 | 62.2 | 52.7 | 51.5 | 27.1 | | Max | 70.8 | 69.1 | 75.7 | 74.9 | 71.1 | 78.6 | 75.5 | 74.7 | 76.4 | 73.4 | 73.8 | 73.1 | 78.6 | #### Point Loma Wastewater Treatment Plant ## 2009 Total Dissolved Solids (mg/L) | | Jar | n | Fel | b | M | ar | Ap | r | May | | Jun | _ | Ju | 1 | Au | g | Sej | p | Oc | t _ | No | v | Dec | 2 | | | |----------|----------|----------| | Day | Inf | Eff | | | 1 | 1740 | 1740 | 1620 | 1620 | 1760 | 1790 | 1950 | 2000 | 1800 | 1820 | 1700 | 1665 | 1740 | 1840 | 2100 | 2160 | 1990 | 2070 | 2040 | 2060 | 1630 | 1690 | 1850 | 1860 | | | | 2 | 1750 | 1740 | 1660 | 1690 | 1800 | 1800 | 1980 | 2045 | 1770 | 1770 | 1680 | 1730 | 1740 | 1660 | 2070 | 2100 | 1870 | 1870 | 1860 | 1880 | 1700 | 1680 | 1830 | 1860 | | | | 3 | 1650 | 1670 | 1740 | 1750 | 1830 | 1800 | 1850 | 1860 | 1730 | 1750 | 1690 | 1740 | 1680 | 1690 | 2110 | 2140 | 1980 | 1960 | 1650 | 1670 | 1790 | 1785 | 1930 | 1905 | | | | 4 | 1600 | 1680 | 1760 | 1780 | 1890 | 1880 | 1710 | 1790 | 1730 | 1680 | 1770 | 1830 | 1640 | 1660 | 2160 | 2260 | 1840 | 1860 | 1630 | 1670 | 1720 | 1740 | 1850 | 1890 | | | | 5 | 1700 | 1700 | 1770 | 1770 | 1850 | 1850 | 1720 | 1770 | 1820 | 1890 | 1830 | 1890 | 1700 | 1740 | 2140 | 2060 | 1820 | 1840 | 1720 | 1740 | 1700 | 1710 | 1840 | 1830 | | | | 6 | 1760 | 1770 | 1670 | 1670 | 1810 | 1840 | 1780 | 1780 | 1840 | 1820 | 1820 | 1805 | 1680 | 1650 | 1990 | 2040 | 1910 | 1900 | 1650 | 1670 | 1770 | 1790 | 1730 | 1770 | | | | 7 | 1790 | 1770 | 1450 | 1470 | 1790 | 1800 | 1800 | 1810 | 1820 | 1815 | 1750 | 1840 | 1710 | 1760 | 2040 | 2070 | 1840 | 1870 | 1600 | 1620 | 1730 | 1740 | 1430 | 1450 | | | | 8 | 1750 | 1800 | 1510 | 1500 | 1760 | 1755 | 1810 | 1820 | 1830 | 1850 | 1850 | 1910 | 1670 | 1690 | 2030 | 2080 | 2010 | 2070 | 1570 | 1600 | 1640 | 1640 | 1590 | 1555 | | | | 9 | 1790 | 1820 | 1490 | 1540 | 1790 | 1860 | 1780 | 1740 | 1810 | 1850 | 1900 | 1920 | 1750 | 1750 | 2010 | 2000 | 2390 | 2430 | 1700 | 1710 | 1680 | 1700 | 1720 | 1770 | | | | 10 | 1720 | 1790 | 1660 | 1620 | 1810 | 1840 | 1830 | 1850 | 1770 | 1780 | 1840 | 1860 | 1880 | 1900 | 2090 | 2070 | 2070 | 2100 | 1580 | 1630 | 1760 | 1790 | 1760 | 1770 | | | | 11 | 1930 | 2020 | 1710 | 1670 | 1880 | 1870 | 1760 | 1770 | 1810 | 1810 | 1960 | 1970 | 1660 | 1680 | 2530 | 2480 | 1970 | 2010 | 1530 | 1520 | 1660 | 1700 | 1770 | 1750 | | | | 12 | 1730 | 1740 | 1810 | 1750 | 1860 | 1870 | 1700 | 1705 | 1800 | 1785 | 1890 | 1900 | 1570 | 1620 | 2100 | 2160 | 1950 | 1980 | 1670 | 1660 | 1780 | 1780 | 1650 | 1670 | | | | 13 | 1800 | 1790 | 1760 | 1770 | 1770 | 1780 | 1760 | 1770 | 1840 | 1810 | 1850 | 1860 | 1620 | 1620 | 2050 | 2090 | 1920 | 2010 | 1760 | 1750 | 1790 | 1780 | 1500 | 1475 | | | | 14 | 1820 | 1800 | 1610 | 1630 | 1770 | 1760 | 1720 | 1720 | 1780 | 1760 | 1780 | 1810 | 1650 | 1680 | 2130 | 2120 | 2000 | 1990 | 1630 | 1635 | 1730 | 1740 | 1690 | 1670 | | | | 15 | 1800 | 1780 | 1620 | 1620 | 1890 | 1730 | 1580 | 1680 | 1860 | 1870 | 1820 | 1830 | 1730 | 1730 | 2120 | 2125 | 2100 | 2100 | 1710 | 1730 | 1650 | 1680 | 1680 | 1750 | | | | 16 | 1690 | 1680 | 1450 | 1475 | 1810 | 1870 | 1660 | 1690 | 1780 | 1810 | 1840 | 1815 | 1790 | 1750 | 2100 | 2170 | 2020 | 2080 | 1800 | 1820 | 1730 | 1750 | 1780 | 1830 | | | | 17 | 1660 | 1680 | 1540 | 1600 | 1880 | 1860 | 1670 | 1660 | 1770 | 1800 | 1880 | 1860 | 1750 | 1780 | 2240 | 2260 | 2110 | 2140 | 1760 | 1760 | 1800 | 1780 | 1770 | 1800 | | | | 18 | 1650 | 1710 | 1660 | 1660 | 1820 | 1800 | 1650 | 1650 | 1740 | 1760 | 1890 | 1900 | 1730 | 1760 | 2400 | 2360 | 2050 | 2090 | 1650 | 1660 | 1790 | 1785 | 1760 | 1780 | | | | 19 | 1810 | 1820 | 1730 | 1740 | 1820 | 1820 | 1680 | 1680 | 1770 | 1770 | 1850 | 1840 | 1710 | 1720 | 2400 | 2440 | 2060 | 2100 | 1770 | 1745 | 1790 | 1820 | 1850 | 1830 | | | | 20 | 1830 | 1780 | 1710 | 1800 | 1790 | 1820 | 1720 | 1720 | 1750 | 1750 | 1820 | 1870 | 1830 | 1840 | 2450 | 2405 | 1950 | 1970 | 1700 | 1740 | 1750 | 1770 | 1770 | 1760 | | | | 21 | 1890 | 1860 | 1670 | 1695 | 1710 | 1800 | 1740 | 1760 | 1820 | 1840 | 1860 | 1825 | 1980 | 1945 | 2350 | 2320 | 2030 | 2050 | 1720 | 1730 | 1680 | 1670 | 1760 | 1750 | | | | 22 | 1990 | 1955 | 1690 | 1730 | 1740 | 1750 | 1800 | 1770 | 1840 | 1875 | 1850 | 1840 | 2040 | 2040 | 2220 | 2270 | 1970 | 1980 | 1890 | 1870 | 1630 | 1670 | 1800 | 1840 | | | | 23 | 1750 | 1760 | 1680 | 1710 | 1770 | 1755 | 1720 | 1770 | 1860 | 1860 | 1870 | 1960 | 2040 | 2060 | 1840 | 1850 | 1940 | 2000 | 1750 | 1790 | 1660 | 1635 | 2080 | 2070 | | | | 24 | 1680 | 1690 | 1840 | 1840 | 1890 | 1900 | 1820 | 1810 | 1860 | 1890 | 1990 | 2000 | 2050 | 2070 | 1930 | 1960 | 2050 | 2035 | 1680 | 1715 | 1720 | 1730 | 1830 | 1790 | | | | 25
26 | 1980
1750 | 1890
1750 | 1770
1860 | 1740
1820 | 1850
1840 | 1840
1850 | 1820
1790 | 1830
1790 | 1810
1840 | 1800
1850 | 1810
1780 | 1840 | 2130 | 2140 | 1910
1890 | 1925
1930 | 1930 | 1990 | 1530
1590 | 1670
1580 | 1790
1890 | 1800
1960 | 1910
1880 | 1890
1870 | | | | 27 | 1780 | 1735 | 1830 | 1840 | 1890 | 1910 | 1770 | 1755 | 1750 | 1770 | 1770 | 1865
1750 | 2080
1990 | 2100
2010 | 1960 | 1930 | 2060
1980 | 2060
2120 | 1610 | 1590 | 1840 | 1840 | 1870 | 1890 | | | | 28 | 1660 | 1680 | 1770 | 1820 | 1850 | 1850 | 1820 | 1820 | 1770 | 1800 | 1650 | 1670 | 2090 | 2010 | 1970 | 1970 | 1940 | 2010 | 1640 | 1660 | 1680 | 1720 | 1920 | 1865 | | | | 29 | 1860 | 1900 | 1770 | 1620 | 1900 | 1850 | 1850 | 1850 | 1830 | 1840 | 1720 | 1710 | 1990 | 2040 | 1940 | 1960 | 2180 | 2190 | 1730 | 1715 | 1670 | 1690 | 1930 | 1930 | | | | 30 | 1590 | 1580 | | | 1900 | 1880 | 1810 | 1810 | 1740 | 1770 | 1680 | 1760 | 2040 | 1990 | 1930 | 2005 | 2370 | 2340 | 1750 | 1700 | 1740 | 1750 | 1880 | 1910 | Sumn | nary. | | 31 | 1660 | 1670 | | | 1960 | 1950 | 1010 | 1010 | 1640 | 1670 | 1000 | 1700 | 2090 | 2120 | 1990 | 1970 | 2310 | 2340 | 1620 | 1670 | 1740 | 1750 | 1950 | 1980 | Influent | Effluent | | Avg | 1760 | 1766 | 1680 | 1690 | 1828 | 1830 | 1768 | 1783 | 1793 | 1804 | 1813 | 1836 | 1831 | 1841 | 2103 | 2120 | 2010 | 2041 | 1693 | 1708 | 1730 | 1744 | 1792 | 1799 | 1817 | 1830 | | Min | 1590 | 1580 | 1450 | 1470 | 1710 | 1730 | 1580 | 1650 | 1640 | 1670 | 1650 | 1665 | 1570 | 1620 | 1840 | 1850 | 1820 | 1840 | 1530 | 1520 | 1630 | 1635 | 1430 | 1450 | 1620 | 1640 | | Max | 1990 | 2020 | 1860 | 1840 | 1960 | 1950 | 1980 | 2045 | 1860 | 1890 | 1990 | 2000 | 2130 | 2140 | 2530 | 2480 | 2390 | 2430 | 2040 | 2060 | 1890 | 1960 | 2080 | 2070 | 2530 | 2480 | | | | | - 300 | -5.0 | | 2703 | -, 00 | | | 2070 | | 2000 | | | | 00 | | 00 | | | | 2,00 | | | | 00 | ### F. Toxicity Bioassays **Toxicity Testing: Point Loma Wastewater Treatment Plant Effluent, 2009** #### INTRODUCTION The City of San Diego's Toxicology Laboratory (CSDTL) conducted aquatic toxicity tests (bioassays) as required by its NPDES Permit No. CA0107409, Order No. R9-2002-0025 for the Point Loma Wastewater Treatment Plant (PLWTP). The testing requirements are designed to determine the acute and chronic toxicity of effluent samples collected from the PLWTP. This chapter presents summaries and discussion of the toxicity tests conducted in 2009. Toxicity testing of wastewater effluent measures the bioavailability of toxicants in a complex mixture, accounts for interactions among potential toxicants, and integrates the effects of all constituents. Acute and chronic bioassays are characterized by the duration of exposure of test organisms to a toxicant as well as the adverse effect (measured response) produced as the result of exposure to a toxicant. Acute toxicity testing consists of a short-term exposure period, usually 96 hours or less, and the acute effect refers to mortality of the test organism. The City of San Diego is required to conduct acute toxicity tests of PLWTP effluent on a semiannual schedule. Chronic toxicity testing, in the classic sense, refers to long-term exposure of the test organism to a potential toxicant. This may involve exposing the test organism for its entire reproductive life cycle, which may exceed 12 months for organisms such as fish. In general, chronic tests are inherently more sensitive to toxicants than acute tests in that adverse effects are detected at lower toxicant concentrations. The City of San Diego is required to conduct monthly critical/early life stage chronic tests of PLWTP effluent that are intermediate between the acute and chronic toxicity testing protocols discussed above. These test results serve as short-term estimates of chronic toxicity. #### **MATERIALS & METHODS** #### **Test Material** Twenty-four hour, flow-weighted, composite effluent samples were collected at the PLWTP and stored at 4 °C until test initiation. All tests were initiated within 36 hours of sample collection. The acute toxicity test concentrations were 3.87, 7.75, 15.5, 31.0, and 62% (nominal). Unimpacted receiving water was used as dilution water in accordance with the NPDES permit. Receiving water was collected at City of San Diego monitoring station B8 and used within 96 hours of collection. The receiving water samples were collected from a depth of 2 m and stored at 4 °C until test initiation. The station coordinates are as follows: | Collection Location | Latitude/Longitude | Depth (m) | | |---------------------|-----------------------------|-----------|--| | B-8 | 32° 45.50′ N, 117° 20.77′ W | 88.4 | | Chronic toxicity test concentrations consisted of 0.15, 0.27, 0.49, 0.88, and 1.56% effluent.
Dilution water for the chronic effluent tests was collected in the same manner as in the acute toxicity tests. Dilution water for the acute and chronic reference toxicant tests was obtained from the Scripps Institution of Oceanography (SIO), filtered, held at 4 °C, and used within 96 hours of collection. Detailed methodology for all toxicity testing is described in the City of San Diego Toxicology Laboratory Quality Assurance Manual (City of San Diego 2008). # **Acute Bioassays** # Mysid Survival Bioassay Acute bioassays using the mysid, *Mysidopsis bahia*, were conducted in March and September 2009 in accordance with USEPA protocol EPA/600/4-90/027F (USEPA 1993). Larval mysids (4-5 days old) were purchased from Aquatic Bio Systems (Fort Collins, CO), and acclimated to test temperature and salinity for at least 24 hours. Upon test initiation, the mysids (10 per replicate) were exposed for 96 hours in a static-renewal system to the effluent exposure series. Receiving water and brine controls were also tested. The test solutions were renewed at 48 hours and the organisms were fed once daily. Simultaneous reference toxicant testing was performed using reagent grade copper chloride. Test concentrations consisted of 56, 100, 180, 320, and 560 μ g/L copper. A SIO seawater control was also tested. At the end of the exposure period, percent survival was recorded. Tests were declared valid if control mortality did not exceed 10%. The data were analyzed using a multiple comparison procedure and point estimation method prescribed by USEPA (1993). ToxCalc software (Tidepool Scientific Software 2002) was used for all statistical analyses. ## **Chronic Bioassays** # Kelp Germination and Growth Test Chronic bioassays using the giant kelp, *Macrocystis pyrifera*, were conducted each month during 2009 in accordance with USEPA protocol EPA/600/R-95/136 (USEPA 1995). Kelp zoospores were obtained from the reproductive blades (sporophylls) of adult *Macrocystis* plants at the kelp beds near La Jolla, California one day prior to test initiation. The zoospores were exposed in a static system for 48 hours to the effluent exposure series. A receiving water control was also tested. Simultaneous reference toxicant testing was performed using reagent grade copper chloride. The concentrations of copper in the exposure series were 5.6, 10, 18, 32, 56, 100, and 180 μ g/L. A SIO seawater control was also tested. At the end of the exposure period, 100 zoospores from each replicate were examined and the percent germination was recorded. In addition, germ-tube length was measured and recorded for 10 of the germinated zoospores. The data were analyzed in accordance with "Flowchart for statistical analysis of giant kelp, *Macrocystis pyrifera*, germination data" and "Flowchart for statistical analysis of giant kelp, *Macrocystis pyrifera*, growth data" (see USEPA 1995). ToxCalc software (Tidepool Scientific Software 2002) was used for all statistical analyses. ## Red Abalone Development Bioassay Chronic bioassays using the red abalone, *Haliotis rufescens*, were conducted each month during 2009 in accordance with USEPA protocol EPA/600/R-95/136 (USEPA 1995). Test organisms were purchased from Cultured Abalone (Goleta, California), and shipped via overnight delivery to the CSDTL. Mature male and female abalones were placed in gender-specific natural seawater tanks and held at 15 °C. For each test event, spawning was induced in 6-8 abalones in gender-specific vessels. Eggs and sperm were retained and examined under magnification to ensure good quality. Once deemed acceptable, the sperm stock was used to fertilize the eggs, and a specific quantity of fertilized embryos was added to each test replicate and exposed to the effluent series for 48 hours. A receiving water control was also tested. At the end of the test period, 100 embryos were examined and the number of normally and abnormally developed embryos was recorded. Simultaneous reference toxicant testing was performed using reagent grade zinc sulfate. The concentrations of zinc in the exposure series were 10, 18, 32, 56, and 100 μ g/L. A SIO seawater control was also tested. The percentage of normally developed embryos for each replicate was arcsine square root transformed. The data were analyzed in accordance with "Flowchart for statistical analysis of red abalone *Haliotis rufescens*, development data" (see USEPA 1995). ToxCalc software (Tidepool Scientific Software 2002) was used for all statistical analyses. #### **RESULTS & DISCUSSION** #### **Acute Bioassays** In 2009, all acute toxicity tests were conducted using mysids (*Mysidopsis bahia*). All tests met the acceptability criterion of >90% control survival and demonstrated compliance with permit standards (Table T.1). ## **Chronic Bioassays** In 2009, the City conducted chronic toxicity tests using the giant kelp (*Macrocystis pyrifera*), which is the most sensitive species mandated by the compliance monitoring program. The results are summarized in Table T.2. All tests met the acceptability criteria and were within compliance limits. The City also conducted chronic bioassays using the red abalone (*Haliotis rufescens*) on a voluntary basis due to the ecological significance of the species. The results are also presented in Table T.2. All red abalone tests met the acceptability criteria, and all were within compliance limits. #### LITERATURE CITED - City of San Diego. (2008). Quality Assurance Manual for Bioassay Testing. Metropolitan Wastewater Department, Environmental Monitoring and Technical Services Division, San Diego, CA. - Tidepool Scientific Software. (2002). ToxCalc Toxicity Information Management System Database Software - USEPA. (1993). Methods for Measuring Acute Toxicity of Effluents and Receiving Waters to Freshwater and Marine Organisms. Fourth Edition. C.I. Weber (ed). Environmental Monitoring and Support Laboratory, U.S. Environmental Protection Agency, Cincinnati, OH. EPA/600/4-90/027F - USEPA. (1995). Short-Term Methods for Estimating the Chronic Toxicity of Effluents and Receiving Waters to West Coast Marine and Estuarine Organisms. Chapman, G.A., D. L. Denton, and J.M. Lazorchak (eds). Environmental Monitoring and Support Laboratory, U.S. Environmental Protection Agency, Cincinnati, OH. EPA/600/R-95/136 # TABLE T.1 Results and compliance summary of acute bioassays conducted using PLWTP effluent during 2009 Data are presented in toxic unit acute (TUa) values. The 2001 California Ocean Plan compliance limit is 6.5 TUa. | Sample Date | Mysid 96-Hour Bioassay | |-------------------|------------------------| | 03/15/2009 | 4.2 | | 09/20/2009 | 1.9 | | N | 2 | | No. in compliance | 2 | | Mean TUa | 3.1 | **TABLE T.2**Results of chronic toxicity testing of PLWTP effluent from January through December 2009. Data are presented in toxic unit chronic (TUc) values. NPDES permit limit is 205 TUc. | | Gian | t Kelp | Red Abalone | |-------------------|-------------|--------|-------------| | Sample Date | Germination | Growth | Development | | 01/06/2009 | 64 | 64 | 64 | | 02/03/2009 | 64 | 64 | - | | 02/10/2009 | - | - | Not valid | | 03/03/2009 | 64 | 64 | 64 | | 04/14/2009 | n.v. | n.v. | 64 | | 04/22/2009 | 64 | 64 | - | | 05/12/2009 | 64 | 64 | 64 | | 06/09/2009 | n.v. | n.v. | - | | 06/14/2009 | - | - | 64 | | 06/25/2009 | 64 | 64 | - | | 07/07/2009 | 64 | 64 | 64 | | 08/04/2009 | 64 | 64 | 64 | | 09/14/2009 | 114 | 64 | 64 | | 10/20/2009 | - | - | 64 | | 10/25/2009 | 114 | 64 | - | | 11/03/2009 | 64 | 64 | - | | 11/17/2009 | - | - | 64 | | 12/08/2009 | - | - | 64 | | 12/14/2009 | 64 | 64 | - | | N | 12 | 12 | 11 | | No. in compliance | 12 | 12 | 11 | | Mean TUc | 72 | 64 | 64 | This page left blank intentionally. # G. 6-Year Tables | | | | | | | | | | | | ARSEN | IIC (ug/L) | 2004 | | | | | | | | | | | | |-----------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|-------------------|--------------|--------------|--------------|--------------|--------------|--------------|---------------|--------------|--------------|--------------|--------------| | | | JAN | | FEB | | MAR | | APR | | MAY | | JUN | | JUL | | AUG | | SEP | | OCT | | NOV | | DEC | | Week
1 | Inf
1.05 | Eff
0.84 | Inf | Eff | Inf
1.42 | Eff
0.84 | Inf
1.45 | Eff
1.38 | Inf
1.93 | Eff
2.36 | Inf
1.09 | Eff
1.11 | <u>Inf</u>
1.4 | Eff
1.04 | Inf
0.83 | Eff
<0.40 | Inf
2.24 | Eff
1.06 | Inf
1.32 | 0.86 | Inf
1.56 | Eff
0.91 | Inf
2.18 | Eff
1.25 | | 2 | 2.13 | 1.32 | 1.2 | 0.68 | 2.15 | 1.44 | 1.43 | 0.51 | 1.1 | 1.45 | 1.09 | 1.11 | 0.99 | 0.63 | 0.62 | NA | 1.7 | 1.42 | 1.32 | 1.27 | 1.09 | 0.68 | 1.59 | 1.28 | | 3 | 2.05 | 1.88 | 0.77 | ND | 2.16 | 1.89 | 1.83 | 1.32 | 1.41 | 0.88 | 1.84 | 1.2 | | | 1.75 | 1.38 | 1.02 | 0.69 | 2.73 | 1.76 | 1.36 | 0.99 | 1.71 | 1.57 | | 4 | 2.3 | 1.7 | 2.57 | 1.29 | 0.99 | 0.46 | 1.49 | 0.9 | 1.25 | 1.37 | 2.06 | 1.22 | 1.26 | 0.89 | 1.64 | 1.24 | 1.29 | 1.17 | 3.68 | 1.82 | 0.96 | 0.72 | 1.92 | 0.88 | | Avg | 1.88 | 1.44 | 1.51 | 0.66 | 1.68 | 1.16 | 1.46 | 1.03 | 1.42 | 1.52 | 1.72 | 1.2 | 1.22 | 0.85 | 1.21 | 0.87 | 1.56 | 1.09 | 2.26 | 1.43 | 1.24 | 0.83 | 1.85 | 1.25 | | | | | | | | | | | | | ARSEN | IIC (ug/L) | 2005 | | | | | | | | | | | | | | | JAN | | FEB | | MAR | | APR | | MAY | | JUN | | JUL | | AUG | | SEP | | OCT | | NOV | | DEC | | Week | Inf | Eff | 1 2 | 3.22 | 1.88 | 1.35
1.53 | 2.31
0.67 | 3.93
1.78 | 1.38
1.26 | 2.13 | 1.49
1.37 | 2.79 | 1.79 | 1.94
1.04 | 1.14
0.68 | 1.28
1.29 | 0.71
0.74 | 2.13
1.03 | 1.6
0.64 | 1.1
1.66 | 0.51
1.33 | 1.68
1.09 | 0.53
0.5 | 3.41 | 1.83 | 1.71
1.07 | 1.13
0.47 | | 3 | 1.58 | 0.89 | 1.88 | 0.94 | 1.32 | 0.87 | 2.12 | 0.99 | 1.06 | 0.49 | 1.63 | 1.36 | 1.75 | 1.61 | 1.06 | 0.53 | 1.82 | 1.25 | 1.87 | 1.26 | 2.56 |
2.07 | 0.87 | ND | | 4 | 1.23 | 1.04 | 2.85 | 1.46 | 1.96 | 1.83 | 1.26 | 0.66 | 1.89 | 1.66 | 1.11 | 0.45 | 1.99 | 1.82 | 0.97 | 0.74 | 2.89 | 2.38 | 1.13 | 0.66 | 1.22 | 0.83 | 1 | 0.43 | | Avg | 2.01 | 1.27 | 1.9 | 1.35 | 2.25 | 1.34 | 1.9 | 1.13 | 1.91 | 1.31 | 1.43 | 0.91 | 1.58 | 1.22 | 1.3 | 0.88 | 1.87 | 1.37 | 1.44 | 0.74 | 2.4 | 1.58 | 1.15 | 0.51 | | | | | | | | | | | | | ARSEN | IIC (ug/L) | 2006 | | | | | | | | | | | | | | | JAN | | FEB | | MAR | | APR | | MAY | | JUN | | JUL | | AUG | | SEP | | ОСТ | | NOV | | DEC | | Week | Inf | Eff | 1 | 1.61 | 0.70 | 1.08 | 0.66 | 1.22 | 0.45 | 0.95 | 0.46 | 1.24 | ND | 1.07 | ND | 0.73 | 0.67 | 1.17 | 0.76 | 1.04 | 0.56 | 1.08 | 0.49 | 1.44 | 0.77 | 0.85 | <.40 | | 2 | 1.13
1.12 | 0.63
0.53 | 1.00
1.15 | 0.65
0.55 | 1.03
0.61 | 0.4
ND | 1.67
1.17 | 0.61
0.6 | 0.82
0.83 | 0.44
0.5 | 0.91
0.91 | 0.46
0.57 | 1.23
0.99 | 0.59
0.65 | 0.84
0.95 | 0.56
0.77 | 1.10
1.00 | 0.51
0.51 | 1.07
1.34 | 0.50 | 1.23 | 0.65 | 0.87 | ND
0.41 | | 4 | 1.12 | 0.55 | 1.15 | 0.88 | 0.61 | ND | 0.84 | 0.69 | 1.12 | 0.59 | 0.82 | 0.57 | 0.76 | 0.62 | 0.95 | 0.63 | 1.00 | 0.51 | 1.22 | <0.40
0.65 | 1.13
1.18 | 0.72
0.62 | 0.89
0.91 | 0.41
0.43 | | Avg | 1.25 | 0.61 | 1.29 | 0.69 | 0.95 | 0.28 | 1.16 | 0.59 | 1.00 | 0.51 | 0.93 | 0.38 | 0.93 | 0.63 | 0.98 | 0.68 | 1.05 | 0.53 | 1.18 | 0.41 | 1.25 | 0.69 | 0.88 | 0.21 | ARSEN | IIC (ug/L) | 2007 | | | | | | | | | | | | | Week | Inf | JAN
Eff | Inf | FEB
Eff | Inf | MAR
Eff | Inf | APR
Eff | Inf | MAY
Eff | Inf | JUN
Eff | Inf | JUL
Eff | Inf | AUG
Eff | Inf | SEP
Eff | Inf | OCT
Eff | Inf | NOV
Eff | Inf | DEC
Eff | | 1 | 1.21 | 0.51 | 0.89 | ND | 1.32 | 0.70 | 1.18 | 0.73 | 0.92 | 0.55 | 1.39 | 0.95 | 1.09 | 0.69 | 1.00 | ND | 1.44 | 0.89 | 1.51 | 0.73 | 0.90 | 0.58 | 2111 | | | 2 | 1.15 | 0.68 | 0.83 | 0.48 | 1.03 | 0.73 | 1.12 | 0.71 | 1.15 | 1.20 | 1.03 | 0.81 | 0.93 | 0.74 | 1.23 | 0.6 | 1.00 | 0.57 | 1.16 | 0.67 | 0.96 | 0.55 | 1.29 | 0.86 | | 3 | 0.72 | 0.56 | 1.34 | 0.78 | 1.18 | 0.66 | 0.92 | 0.68 | 1.28 | 1.00 | 1.18 | 0.86 | 0.95 | 0.67 | 1.25 | ND | 1.05 | 0.53 | 1.10 | 0.79 | 0.81 | 0.56 | 1.00 | 0.73 | | 4 | 1.58 | 0.52 | 1.02 | 0.63 | 1.25 | 0.7 | 1.08 | 0.71 | 1.35 | 0.96 | 1 20 | 0.07 | 1.14 | 0.67
0.69 | 1.30 | ND
0.20 | 1.28 | 0.72 | 0.93 | 0.64 | 1.26 | 0.71 | 1.23 | 0.66 | | Avg | 1.17 | 0.57 | 1.02 | 0.63 | 1.20 | 0.70 | 1.08 | 0.71 | 1.18 | 0.93 | 1.20 | 0.87 | 1.03 | 0.69 | 1.20 | 0.20 | 1.19 | 0.68 | 1.18 | 0.71 | 0.98 | 0.60 | 1.17 | 0.75 | | | | | | | | | | | | | ARSEN | IIC (ug/L) | 2008 | | | | | | | | | | | | | n e e e | T C | JAN | T - C | FEB | T C | MAR | T - C | APR | T C | MAY | T - C | JUN | T C | JUL | T - C | AUG | T C | SEP | T - C | OCT | T C | NOV | T - C | DEC | | Week
1 | Inf
0.97 | 0.71 | Inf
1.13 | 0.50 | Inf
1.28 | 0.48 | Inf
0.93 | 0.58 | Inf | Eff | Inf
1.36 | 0.90 | Inf
0.90 | 0.72 | Inf
1.06 | 0.75 | Inf
1.29 | 0.86 | Inf
1.19 | 0.87 | Inf | Eff | Inf
1.22 | Eff
0.81 | | 2 | 1.63 | 0.64 | 1.13 | 0.58 | 1.01 | 0.45 | 1.14 | 0.88 | 1.28 | 0.98 | 1.13 | 0.71 | 1.23 | 0.72 | 1.27 | 0.73 | 0.97 | 0.71 | 1.30 | 0.66 | 0.87 | 0.79 | 1.10 | 0.72 | | 3 | 0.91 | 0.50 | 1.23 | 0.58 | 1.07 | 0.43 | 1.27 | 0.69 | 1.39 | 0.95 | 1.06 | 0.91 | 1.19 | 0.73 | 1.16 | 0.96 | 1.03 | 0.84 | 1.24 | 0.73 | 1.01 | 0.72 | 2.85 | 1.55 | | 4 | 1.21 | 0.55 | 1.38 | 0.79 | 0.82 | 0.69 | 1.30 | 0.86 | 1.34 | 0.95 | 1.03 | 0.54 | 1.19 | 0.77 | 1.34 | 0.91 | 1.15 | 0.84 | 1.20 | 0.83 | 1.05 | 0.68 | 1.48 | 1.07 | | Avg | 1.18 | 0.60 | 1.41 | 0.61 | 1.05 | 0.51 | 1.16 | 0.75 | 1.34 | 0.96 | 1.15 | 0.77 | 1.13 | 0.73 | 1.21 | 0.86 | 1.11 | 0.81 | 1.23 | 0.77 | 0.98 | 0.73 | 1.66 | 1.04 | | | | | | | | | | | | | ARSEN | IIC (ug/L) | 2009 | | | | | | | | | | | | | | | JAN | | FEB | | MAR | | APR | | MAY | | JUN | | JUL | | AUG | | SEP | | OCT | | NOV | | DEC | | Week | Inf | Eff Eff
1.22 | Inf | Eff | Inf | Eff
0.70 | Inf | Eff | Inf | Eff
0.01 | | 1 2 | 1.16
0.75 | 0.86
0.65 | 1.04
1.35 | 0.58
0.89 | 0.97 | 0.42 | 1.18
1.34 | 0.66
0.56 | 1.02
1.02 | 0.66
1.02 | 0.54
1.21 | 0.76
0.78 | 1.08
1.13 | 0.59
0.68 | 1.78
1.70 | 1.22
1.07 | 1.52 | 1.09 | 1.58
0.91 | 0.78
0.75 | 0.97
0.83 | 0.68
0.70 | 1.15
1.28 | 0.81
0.83 | | 3 | 1.08 | 0.65 | 1.24 | 0.88 | 1.02 | <0.42 | 1.22 | 0.89 | 1.40 | 0.88 | 1.23 | 0.78 | 1.15 | 0.78 | 1.32 | 1.12 | 1.56 | 1.12 | 1.15 | 0.73 | 1.10 | 0.76 | 1.28 | 0.59 | | 4 | 1 | 0.66 | 1.14 | 0.88 | 1.09 | 0.70 | 1.00 | 0.66 | 1.42 | 0.79 | 0.84 | 0.59 | 1.01 | 0.79 | 1.47 | 1.09 | 1.45 | 1.08 | 1.11 | 0.87 | 1.10 | 0.89 | 1.04 | 0.61 | | | | 0.00 | 2121 | 0.00 | 2105 | | | | | | | | 1101 | | | | 21.15 | 1.00 | | | | | | | | | | | | | | | | | | | CADMI | UM (ug/L) | 2004 | | | | | | | | | | | | |---------------------------------|--|---|--|---|--|--|--|---|---|--|--|--|--|--|---|---|--|--|---|---|---|---|--|---| | | | JAN | | FEB | | MAR | | APR | | MAY | | JUN | | JUL | | AUG | | SEP | | OCT | | NOV | | DEC | | Week | Inf | Eff | 1 | 10.4 | ND | | | ND | ND | 5.5 | ND | ND | ND | 5.8 | 2 | 16.4 | 2.7 | 7.5 | 4.3 | 5.6 | 2 | 5.7 | 1.4 | 6.5 | 0.9 | 5.6 | 2.1 | | 2 | ND | ND | 7.1 | ND | 7.2 | ND | 13.8 | ND | 19.1 | ND | 12 | 1.7 | 7.9 | 1.9 | 17.5 | 20.6 | 4.5 | 4.3 | 9.2 | 2.5 | 6.1 | 1.8 | 7.8 | 1.7 | | 3 | ND | ND | 10.3 | ND | 6.3 | ND | 16.5 | ND | ND | ND | 10 | 1.4 | | | 6.4 | 17.1 | 5.6 | 1.6 | 14.4 | 4.5 | 6.1 | 1.7 | 6 | 1.6 | | 4 | 8.4 | ND | 6.2 | <5.0 | ND | ND | ND | ND | ND | 11.7 | 5.5 | 1.5 | 6.1 | 6.1 | 22.2 | 2.6 | 4.5 | 1.7 | 5.5 | 1.8 | 4.9 | 1.6 | 4.5 | 1 | | Avg | 4.6 | ND | 7.9 | 0 | 3.4 | ND | 8.9 | ND | 4.8 | 2.9 | 8.3 | 1.7 | 10.1 | 3.6 | 13.4 | 11.2 | 5.1 | 2.4 | 8.7 | 2.6 | 5.9 | 1.5 | 6 | 1.6 | | | | | | | | | | | | | CADMI | UM (ug/L) | 2005 | | | | | C=D | | 0.57 | | | | 250 | | HI- | T C | JAN | T C | FEB | T C | MAR | T C | APR | T C | MAY | T C | JUN | T - C | JUL | T C | AUG | T C | SEP | T C | OCT . | T - C | NOV | T C | DEC | | Week | Inf | Eff | Inf
0.3 | Eff | Inf | Eff | Inf
ND | Eff
ND | Inf | Eff | Inf
1 | Eff | Inf
0.3 | Eff | Inf
0.7 | Eff 0.4 | Inf
ND | Eff
ND | Inf | Eff | Inf | Eff | Inf
ND | Eff
ND | | 1
2 | 0.3 | 0.2 | ND | ND
0.5 | 0.2
0.3 | 0.5
ND | ND | ND
ND | 0.4 | ND | 0.6 | 0.6
0.8 | 0.4 | ND
ND | 0.4 | 0.4
<0.2 | 0.6 | ND
ND | 0.6
0.3 | ND
ND | ND | ND | ND | ND
ND | | 3 | ND | 0.4 | 1.3 | ND | 0.5 | 0.2 | ND | ND | 0.3 | ND | 1.1 | 0.6 | 0.3 | ND | 0.4 | ND | 0.4 | ND | 0.3 | ND | 0.6 | ND | ND | ND | | 4 | ND | ND | 0.9 | 0.69 | 0.5 | 0.4 | ND | ND | 0.5 | 0.2 | 0.7 | 0.5 | 0.3 | ND | 0.3 | ND | 0.5 | ND | ND | ND | 0.7 | 0.6 | ND | ND | | Average | 0.1 | 0.2 | 0.6 | 0.4 | 0.4 | 0.3 | ND | ND | 0.4 | 0.1 | 0.9 | 0.6 | 0.3 | ND | 0.5 | 0.1 | 0.4 | ND | 0.3 | ND | 0.4 | 0.2 | ND | ND | | | | | | | | | | | | | CADMT | UM (ug/L) | 2006 | | | | | | | | | | | | | | | JAN | | FEB | | MAR | | APR | | MAY | C/ 12/ 12 | JUN | 2000 | JUL | | AUG | | SEP | | ОСТ | | NOV | | DEC | | Week | Inf | Eff | 1 | ND | ND | ND | ND | 0.2 | ND | 0.6 | 0.4 | ND | ND | 0.2 | ND | 0.5 | ND | 0.3 | ND | 0.3 | 0.3 | 0.7 | ND | ND | ND | ND | ND | | 2 | ND | ND | ND | ND | 0.2 | <0.2 | ND | ND | ND | ND | ND | ND | 0.7 | ND | ND | ND | 0.4 | 0.2 | ND | ND | 0.2 | ND | ND | ND | | 3 | ND 0.3 | ND | 0.5 | 0.3 | 0.3 | ND | 0.4 | ND | 4 | 0.5 | ND | ND | ND | | | 0.2 | ND | 0.45 | ND | 0.3 | ND | ND | 0.2 | 0.2 | ND | | | 0.9 | 0.3 | ND | ND | ND | ND | | Average | 0.1 | ND | ND | ND | 0.1 | 0 | 0.2 | 0.1 | 0.11 | ND | ND | ND | 0.4 | 0.1 | 0.2 | ND | 0.4 | 0.2 | 0.4 | 0.1 | 0.1 | ND | ND | ND | | | | | | | | | | | | | CADMI | UM (ug/L) | 2007 | | | | | | | | | | | | | | | JAN | | FEB | | MAR | | APR | | MAY | | JUN | | JUL | | AUG | | SEP | | OCT | | NOV | | DEC | | Week | Inf | Eff | 1 | ND | ND | ND | | | | | ND | ND | | ND | ND | | | ND | | | | 2 | ND | ND | | | | | | ND | ND | ND | 2 | 1.4 | 1.3 | 0.6 | ND | | <0.5 | | | ND | ND | | | | | 3 | | | ND | ND | 38.3 | ND | ND | ND | ND | ND | 2.6 | 1.7 | ND | ND | 0.6 | ND | | 0.6 | ND | ND
0.7 | | 38.3
ND | ND
ND | ND
0.7 | ND
ND | ND
ND | ND
ND | | | ND
ND | ND
ND | 0.6
ND | ND
ND | ND
0.6 | ND
0.6 | ND
ND | ND
ND | ND
ND | ND
ND | ND | ND | | 4 | 0.7 | ND
ND |
0.7 | ND
<0.5 | 38.3
ND
ND | ND
ND
ND | ND
0.7
ND | ND
ND
ND | ND
ND
ND | ND
ND
ND | 2.6
0.7 | 1.7
ND | ND
ND
ND | ND
ND
ND | 0.6
ND
ND | ND
ND
ND | ND
0.6
ND | ND
0.6
ND | ND
ND
ND | ND
ND
ND | ND
ND
ND | ND
ND
ND | ND
ND | ND
ND | | 4
Average | | ND | | ND | 38.3
ND | ND
ND | ND
0.7 | ND
ND | ND
ND | ND
ND | 2.6 | 1.7 | ND
ND | ND
ND | 0.6
ND | ND
ND | ND
0.6 | ND
0.6 | ND
ND | ND
ND | ND
ND | ND
ND | ND | ND | | | 0.7 | ND
ND
ND | 0.7 | ND
<0.5
<0.0 | 38.3
ND
ND | ND
ND
ND | ND
0.7
ND | ND
ND
ND | ND
ND
ND | ND
ND
ND | 2.6
0.7 | 1.7
ND
1.0
UM (ug/L) | ND
ND
ND
0.3 | ND
ND
ND
0.2 | 0.6
ND
ND | ND
ND
ND | ND
0.6
ND | ND
0.6
ND
0.2 | ND
ND
ND | ND
ND
ND | ND
ND
ND | ND
ND
ND | ND
ND | ND
ND
ND | | Average | 0.7 | ND
ND
ND | 0.7 | ND
<0.5
<0.0 | 38.3
ND
ND
9.6 | ND
ND
ND | ND
0.7
ND
0.2 | ND
ND
ND | ND
ND
ND | ND
ND
ND | 2.6
0.7
1.8
CADMI | 1.7
ND
1.0
UM (ug/L)
JUN | ND
ND
ND
0.3 | ND
ND
ND
0.2 | 0.6
ND
ND
0.2 | ND
ND
ND | ND
0.6
ND
<0.2 | ND
0.6
ND
0.2 | ND
ND
ND | ND
ND
ND | ND
ND
ND | ND
ND
ND | ND
ND
ND | ND
ND
ND | | Average
Week | 0.7
0.3 | ND
ND
ND
JAN
Eff | 0.7
0.2
Inf | ND
<0.5
<0.0
FEB
Eff | 38.3
ND
ND
9.6 | ND
ND
ND
ND | ND
0.7
ND
0.2 | ND
ND
ND
ND | ND
ND
ND | ND
ND
ND | 2.6
0.7
1.8
CADMI | 1.7
ND
1.0
UM (ug/L)
JUN
Eff | ND
ND
0.3
2008
Inf | ND
ND
ND
0.2
JUL
Eff | 0.6
ND
ND
0.2 | ND
ND
ND
ND | ND
0.6
ND
<0.2 | ND
0.6
ND
0.2
SEP
Eff | ND
ND
ND
ND | ND
ND
ND
ND | ND
ND
ND | ND
ND
ND | ND
ND
ND | ND
ND
ND
DEC
Eff | | Average Week | 0.7
0.3
Inf | ND
ND
ND
JAN
Eff
ND | 0.7
0.2
Inf | ND <0.5 <0.0 FEB Eff ND | 38.3
ND
ND
9.6 | ND
ND
ND
MAR
Eff | ND
0.7
ND
0.2 | ND
ND
ND
APR
Eff
ND | ND
ND
ND | ND
ND
ND
ND
MAY
Eff | 2.6
0.7
1.8
CADMI
Inf | 1.7
ND
1.0
UM (ug/L)
JUN
Eff
ND | ND
ND
ND
0.3
2008
Inf
ND | ND
ND
ND
0.2
JUL
Eff | 0.6
ND
ND
0.2 | ND
ND
ND
AUG
Eff | ND
0.6
ND
<0.2 | ND
0.6
ND
0.2
SEP
Eff | ND
ND
ND | ND
ND
ND
OCT
Eff | ND
ND
ND
ND | ND
ND
ND
ND
NOV
Eff | ND
ND
ND | ND
ND
ND
DEC
Eff | | Average Week 1 2 | 0.7
0.3
Inf
ND | ND
ND
ND
JAN
Eff
ND
ND | 0.7 0.2 Inf ND ND | ND <0.5 <0.0 FEB Eff ND ND | 38.3
ND
ND
9.6
Inf
ND
ND | ND
ND
ND
ND
MAR
Eff
ND
ND | ND
0.7
ND
0.2
Inf | ND ND APR Eff ND ND | ND
ND
ND
ND | ND
ND
ND
ND
MAY
Eff | 2.6
0.7
1.8
CADMI
Inf
ND | 1.7
ND
1.0
UM (ug/L)
JUN
Eff
ND
ND | ND
ND
ND
0.3
2008
Inf
ND
ND | ND
ND
ND
0.2
JUL
Eff
ND
ND | 0.6
ND
ND
0.2 | ND
ND
ND
ND
AUG
Eff
ND
ND | ND
0.6
ND
<0.2 | ND 0.6 ND 0.2 SEP Eff ND ND | ND
ND
ND
ND | ND ND ND OCT Eff ND ND | ND
ND
ND
ND | ND
ND
ND
NOV
Eff | ND
ND
ND
Inf
ND
ND | ND
ND
ND
DEC
Eff
ND
ND | | Average Week | 0.7
0.3
Inf
ND
ND | ND
ND
ND
JAN
Eff
ND
ND | 0.7 0.2 Inf ND ND ND | ND <0.5 <0.0 FEB Eff ND ND ND | 38.3
ND
ND
9.6
Inf
ND
ND | ND
ND
ND
ND
ND
ND
MAR
Eff
ND
ND
ND | ND 0.7 ND 0.2 Inf ND ND ND | ND ND ND APR Eff ND ND ND | ND
ND
ND
ND | ND
ND
ND
ND
MAY
Eff
ND
ND | 2.6
0.7
1.8
CADMI
Inf
ND
ND
0.9 | 1.7
ND
1.0
UM (ug/L)
JUN
Eff
ND
ND | ND
ND
ND
0.3
2008
Inf
ND
ND | ND ND ND O.2 JUL Eff ND ND ND | 0.6
ND
ND
0.2
Inf
ND
ND | ND
ND
ND
ND
AUG
Eff
ND
ND | ND 0.6 ND <0.2 Inf ND ND ND | ND 0.6 ND 0.2 SEP Eff ND ND ND | ND
ND
ND
ND | ND ND ND OCT Eff ND ND ND | ND
ND
ND
ND | ND
ND
ND
ND
NOV
Eff | ND
ND
ND
Inf
ND
ND
ND | ND
ND
ND
DEC
Eff
ND
ND | | Average Week 1 2 3 4 | 0.7 0.3 Inf ND ND ND ND | ND ND ND JAN Eff ND ND ND ND ND ND | 0.7 0.2 Inf ND ND ND ND ND | ND <0.5 <0.0 FEB Eff ND ND ND ND | 38.3
ND
ND
9.6
Inf
ND
ND
ND | ND
ND
ND
ND
MAR
Eff
ND
ND
ND | ND 0.7 ND 0.2 Inf ND ND ND ND ND | ND ND ND APR Eff ND ND ND ND ND ND ND ND | ND
ND
ND
ND | ND
ND
ND
ND
MAY
Eff
ND
ND
ND | 2.6
0.7
1.8
CADMI
Inf
ND | 1.7
ND
1.0
UM (ug/L)
JUN
Eff
ND
ND | ND
ND
ND
0.3
2008
Inf
ND
ND
ND | ND
ND
ND
0.2
JUL
Eff
ND
ND | 0.6
ND
ND
0.2 | ND
ND
ND
ND
AUG
Eff
ND
ND
ND | ND
0.6
ND
<0.2 | ND 0.6 ND 0.2 SEP Eff ND ND | ND | ND ND ND OCT Eff ND ND ND ND | ND
ND
ND
ND | ND
ND
ND
ND
NOV
Eff | ND
ND
ND
Inf
ND
ND
ND
ND | ND
ND
ND
DEC
Eff
ND
ND | | Average Week 1 2 3 | 0.7
0.3
Inf
ND
ND | ND
ND
ND
JAN
Eff
ND
ND | 0.7 0.2 Inf ND ND ND | ND <0.5 <0.0 FEB Eff ND ND ND | 38.3
ND
ND
9.6
Inf
ND
ND | ND
ND
ND
ND
ND
ND
MAR
Eff
ND
ND
ND | ND 0.7 ND 0.2 Inf ND ND ND | ND ND ND APR Eff ND ND ND | ND
ND
ND
ND | ND
ND
ND
ND
MAY
Eff
ND
ND | 2.6
0.7
1.8
CADMI
Inf
ND
ND
0.9
0.6 | 1.7
ND
1.0
UM (ug/L)
JUN
Eff
ND
ND
ND
ND | ND ND ND O.3 2008 Inf ND | ND ND ND O.2 JUL Eff ND ND ND ND ND ND | 0.6
ND
ND
0.2
Inf
ND
ND
ND | ND
ND
ND
ND
AUG
Eff
ND
ND | ND 0.6 ND <0.2 Inf ND ND ND ND ND | ND 0.6 ND 0.2 SEP Eff ND ND ND ND | ND
ND
ND
ND | ND ND ND OCT Eff ND ND ND | ND ND ND ND ND Inf ND ND ND | ND
ND
ND
ND
NOV
Eff | ND
ND
ND
Inf
ND
ND
ND | ND ND ND DEC Eff ND ND ND ND ND ND ND | | Average Week 1 2 3 4 | 0.7 0.3 Inf ND ND ND ND | ND ND ND JAN Eff ND ND ND ND ND ND | 0.7 0.2 Inf ND ND ND ND ND | ND <0.5 <0.0 FEB Eff ND ND ND ND | 38.3
ND
ND
9.6
Inf
ND
ND
ND | ND
ND
ND
ND
MAR
Eff
ND
ND
ND | ND 0.7 ND 0.2 Inf ND ND ND ND ND | ND ND ND APR Eff ND ND ND ND | ND
ND
ND
ND | ND
ND
ND
ND
MAY
Eff
ND
ND
ND | 2.6
0.7
1.8
CADMI
Inf
ND
ND
0.9
0.6 | 1.7
ND
1.0
UM (ug/L)
JUN
Eff
ND
ND
ND | ND ND ND O.3 2008 Inf ND | ND ND ND O.2 JUL Eff ND ND ND ND ND ND | 0.6
ND
ND
0.2
Inf
ND
ND
ND | ND ND ND AUG Eff ND | ND 0.6 ND <0.2 Inf ND ND ND ND ND | ND 0.6 ND 0.2 SEP Eff ND ND ND ND | ND | ND ND ND OCT Eff ND | ND ND ND ND ND Inf ND ND ND | ND
ND
ND
ND
NOV
Eff | ND
ND
ND
Inf
ND
ND
ND
ND | ND ND ND DEC Eff ND ND ND ND ND ND ND | | Average Week 1 2 3 4 | 0.7 0.3 Inf ND ND ND ND | ND ND ND JAN Eff ND ND ND ND ND ND ND ND | 0.7 0.2 Inf ND ND ND ND ND | ND <0.5 <0.0 FEB Eff ND ND ND ND ND | 38.3
ND
ND
9.6
Inf
ND
ND
ND | ND N | ND 0.7 ND 0.2 Inf ND ND ND ND ND | ND ND ND ND ND APR Eff ND ND ND ND ND ND ND ND | ND
ND
ND
ND | MD ND ND ND MAY Eff ND ND ND ND ND ND ND ND | 2.6
0.7
1.8
CADMI
Inf
ND
ND
0.9
0.6 | 1.7
ND 1.0 1.0 UM (ug/L) JUN Eff ND ND ND ND ND ND UM (ug/L) | ND ND ND O.3 2008 Inf ND | ND ND ND O.2 JUL Eff ND ND ND ND ND ND ND ND | 0.6
ND
ND
0.2
Inf
ND
ND
ND | ND
ND
ND
ND
AUG
Eff
ND
ND
ND | ND 0.6 ND <0.2 Inf ND ND ND ND ND | ND 0.6 ND 0.2 SEP Eff ND ND ND ND ND ND | ND | ND ND ND OCT Eff ND ND ND ND ND ND ND ND ND | ND ND ND ND ND Inf ND ND ND | ND N | ND
ND
ND
Inf
ND
ND
ND
ND | ND ND ND DEC Eff ND ND ND ND ND ND ND | | Week 1 2 3 4 Average | 0.7 0.3 Inf ND ND ND ND ND ND | ND ND ND SAN DAN DAN | 0.7 0.2 Inf ND ND ND ND ND ND | ND <0.5 <0.0 FEB Eff ND ND ND ND ND ND ND FEB | 38.3
ND
ND
9.6
Inf
ND
ND
ND
ND | ND N | ND 0.7 ND 0.2 Inf ND ND ND ND ND ND | ND ND ND APR Eff ND | ND ND ND Inf | ND ND ND MAY Eff ND | 2.6
0.7
1.8
CADMI
Inf
ND
ND
0.9
0.6 | 1.7
ND 1.0 1.0 UM (ug/L) JUN Eff ND ND ND ND ND ND ND ND UM (ug/L) JUN | ND N | ND ND ND | 0.6
ND
ND
0.2
Inf
ND
ND
ND
ND
ND | ND ND ND AUG Eff ND AUG | ND 0.6 ND <0.2 | ND 0.6 ND 0.2 SEP Eff ND ND ND ND ND SEP | ND ND ND Inf | ND ND ND OCT Eff ND | ND ND ND Inf | ND ND ND NOV Eff ND | ND ND ND ND ND ND ND ND | ND | | Week 1 2 3 4 Average | 0.7
0.3
Inf
ND
ND
ND
ND | ND N | 0.7 0.2 Inf ND | ND <0.5 | 38.3
ND
ND
9.6
Inf
ND
ND
ND
ND | ND N | ND 0.7 ND 0.2 Inf ND | ND N | ND ND ND Inf | ND N | 2.6
0.7
1.8
CADMI
Inf
ND
ND
0.9
0.6
0.4
CADMI | 1.7
ND 1.0 1.0 UM (ug/L) JUN Eff ND ND ND ND ND ND ND JUM LIMIT (ug/L) JUN Eff | ND ND ND 2009 Inf | ND ND ND O.2 JUL Eff ND ND ND ND ND ND ND ND SUL Eff | 0.6
ND
ND
0.2
Inf | ND ND ND AUG Eff AUG Eff | ND 0.6 ND <0.2 | ND 0.6 ND 0.2 SEP Eff ND ND ND ND ND SEP | ND ND ND Inf ND | ND N | ND ND ND Inf | ND ND ND NOV Eff ND | ND N | ND ND DEC EFF ND ND ND ND ND ND ND DEC EFF | | Average Week 1 2 3 4 Average | 0.7 0.3 Inf ND | ND N | 0.7 0.2 Inf ND | ND <0.5 <0.0 FEB Eff ND N |
38.3
ND
ND
9.6
Inf
ND
ND
ND
ND
ND | ND N | ND 0.7 ND 0.2 Inf ND | ND N | ND ND ND Inf ND | ND N | 2.6
0.7
1.8
CADMI
Inf
ND
ND
0.9
0.6
0.4
CADMI
Inf | 1.7
ND 1.0 1.0 UM (ug/L) JUN Eff ND UM (ug/L) JUN Eff ND | ND N | ND ND ND O . 2 JUL Eff ND | 0.6 ND ND 0.2 Inf ND | ND ND ND AUG Eff ND | ND 0.6 ND <0.2 Inf ND | ND 0.6 ND 0.2 SEP Eff ND ND ND ND ND ND SEP Eff | ND ND ND Inf ND | ND N | ND ND ND Inf | ND ND ND NOV Eff ND ND ND NOV Eff < 0.5 | ND ND Inf ND | ND ND DEC Eff ND ND | | Average Week 1 2 3 4 Average | O.7 O.3 Inf ND | ND N | 0.7 0.2 Inf ND | ND <0.5 <0.0 FEB Eff ND N | 38.3
ND
ND
9.6 | ND N | ND 0.7 ND 0.2 Inf ND | ND ND ND APR Eff ND | ND ND ND Inf ND | ND ND ND MAY Eff ND | 2.6
0.7
1.8
CADMI
Inf
ND
ND
0.9
0.6
0.4
CADMI
Inf
ND | 1.7
ND 1.0 1.0 (ug/L) JUN Eff ND ND ND ND JUN UM (ug/L) JUN Eff ND | ND N | ND N | 0.6 ND ND 0.2 Inf ND | ND ND ND AUG Eff ND | ND 0.6 ND <0.2 | ND 0.6 ND 0.2 SEP Eff ND ND ND ND SEP Eff ND | ND ND ND Inf ND | ND ND ND OCT Eff ND ND OCT Eff ND | ND ND ND Inf ND | ND ND NOV Eff ND ND NOV Eff ND ND ND NOV Eff <0.5 ND | ND N | ND ND ND DEC Eff ND | | | | | | | | | | | | | CHROM | CUM (ug/L | 2004 | | | | | | | | | | | | |-----------------------|---|--|--|--|---|--|---|--|---|---|--|--|---|--|---|--|--|---|---|---|---|--|---|--| | Maral. | T C | JAN
Eff | T - C | FEB
Eff | T - C | MAR
Eff | T C | APR
Eff | T C | MAY | T C | JUN | T C | JUL
Eff | Inf | AUG
Eff | T C | SEP
Eff | T - C | OCT
Eff | T C | NOV
Eff | T - C | DEC
Eff | | Week
1 | Inf
10.4 | ND ND | Inf | ETT | Inf
ND | ND ND | Inf
5.5 | ND ND | Inf
ND | Eff
ND | Inf
5.8 | Eff
2 | Inf
16.4 | 2.7 | 7.5 | 4.3 | Inf
5.6 | 2 | Inf
5.7 | 1.4 | Inf
6.5 | 0.9 | Inf
5.6 | 2.1 | | 2 | ND | ND | 7.1 | ND | 7.2 | ND | 13.8 | ND | 19.1 | ND | 12 | 1.7 | 7.9 | 1.9 | 17.5 | 20.6 | 4.5 | 4.3 | 9.2 | 2.5 | 6.1 | 1.8 | 7.8 | 1.7 | | 3 | ND | ND | 10.3 | ND | 6.3 | ND | 16.5 | ND | ND | ND | 10 | 1.4 | | | 6.4 | 17.1 | 5.6 | 1.6 | 14.4 | 4.5 | 6.1 | 1.7 | 6 | 1.6 | | 4 | 8.4 | ND | 6.2 | <5.0 | ND | ND | ND | ND | ND | 11.7 | 5.5 | 1.5 | 6.1 | 6.1 | 22.2 | 2.6 | 4.5 | 1.7 | 5.5 | 1.8 | 4.9 | 1.6 | 4.5 | 1 | | Avg | 4.6 | ND | 7.9 | 0 | 3.4 | ND | 8.9 | ND | 4.8 | 2.9 | 8.3 | 1.7 | 10.1 | 3.6 | 13.4 | 11.2 | 5.1 | 2.4 | 8.7 | 2.6 | 5.9 | 1.5 | 6 | 1.6 | | | | | | | | | | | | | CUROM | FI BA //I | 2005 | | | | | | | | | | | | | | | JAN | | FEB | | MAR | | APR | | MAY | CHROM | IUM (ug/L
JUN |) 2005 | JUL | | AUG | | SEP | | ОСТ | | NOV | | DEC | | Week | Inf | Eff | 1 | | | 5.1 | 2.3 | 3.5 | 2.2 | 5.2 | 23.4 | | | 5.2 | 4 | 4.7 | 0.9 | 4.5 | 2.1 | 5.2 | 23 | 4.1 | ND | | | 3.5 | 1.2 | | 2 | 4.7 | 1.8 | 7.6 | 2.1 | 3.6 | 2.6 | 7 | 1.3 | 5.8 | 2.2 | 5.4 | 5.6 | 3.9 | 1.2 | 4.5 | 1.2 | 8.6 | 1.6 | 4.8 | 0.2 | 11.6 | 1.9 | 3.9 | ND | | 3 | 3.2 | 0.2 | 6.5 | 1.2 | 4.4 | 1 | 5.1 | 2.9 | 3.7 | 1.7 | 5.6 | 5.6 | 2.6 | 1.9 | 5.4 | 1.1 | 3.4 | 1.3 | 4.5 | ND | 4.8 | 5.6 | 2.9 | 0.3 | | 4 | 4.5 | 1.3 | 3.6 | 2.9 | 4.7 | 1.9 | 5.1 | 2.1 | 7.2 | 6.8 | 6.6 | 3.9 | 5.3 | 2.1 | 3.4 | 0.4 | 4.2 | 1.1 | 4 | ND | 3.4 | 1.3 | 5.1 | 0.6 | | Average | 4.1 | 1.1 | 5.7 | 2.1 | 4.1 | 1.9 | 5.6 | 7.4 | 5.6 | 3.6 | 5.7 | 4.8 | 4.1 | 1.5 | 4.5 | 1.2 | 5.4 | 1.6 | 4.4 | 0.1 | 6.6 | 2.9 | 3.9 | 0.5 | | | | | | | | | | | | | CHROM | EUM (ug/L | 2006 | | | | | | | | | | | | | | | JAN | | FEB | | MAR | | APR | | MAY | | JUN | | JUL | | AUG | | SEP | | OCT | | NOV | | DEC | | Week | Inf | Eff | 1 | 27.3 | 3.8 | 4.4 | 1.1 | 4.5 | 1.2 | 3.9 | 0.6 | 7.3 | 0.2 | 4.7 | 1.6 | 4.2 | 1.2 | 5.5 | 1.9 | 9.7 | 6.2 | 9.6 | 0.4 | 10.3 | 1.2 | 7.3 | ND | | 2 | 4.6 | 1.3 | 4.2 | 1.4 | 4 | 0.4 | 181.0 | 0.7 | 6.3 | 0.7 | 10.6 | 1.6 | 13.1 | 1.1 | 5.9 | 2.0 | 11.5 | 3.1 | 8.6 | 7.6 | 13.1 | 2.1 | 4 | ND | | 3 | 8.7 | 1.2 | 4.5 | 3.4 | 2.2 | 0.6 | 4.2 | 1.1 | 4.7 | 1.6 | 6.2 | 0.8
4 | 5.3
7.9 | 2.1
0.9 | 14.7 | 3.6 | 9 | 3.4 | 6.8
16 | 1.1
2.3 | 5.4 | 1.8 | 6.2 | ND
ND | | | 5.7
11.6 | 2.6 | 4.3 | 2.0 | 3.6 | 0.7 | 48.8 | 1.2 | 10.8
7.3 | 1.5 | 10.9
8.1 | 2.0 | 7.6 | 1.3 | 7.3
8.4 | 1.5
2.3 | 10.1 | 4.2 | 10.3 | 2.9 | 6.6
8.9 | 2.9 | 5.4 | ND
ND | | Average | 11.0 | 2.2 | 4.4 | 2.0 | 3.0 | 0.7 | 40.0 | 1.2 | 7.3 | 1.0 | 0.1 | 2.0 | 7.0 | 1.5 | 0.4 | 2.5 | 10.1 | 4.2 | 10.5 | 2.5 | 0.5 | 2.0 | 5.7 | ND | | | | | | | | | | | | | CHROM | EUM (ug/L | 2007 | | | | | | | | | | | | | | | JAN | | FEB | | MAR | | APR | | MAY | | JUN | | JUL | | AUG | | SEP | | OCT | | NOV | | DEC | | Week | Inf | Eff | 1 | 8 | ND | 6.0 | | 6.6 | ND | | | | | | | | | _ | | | | | | | | | | | 2 | 7.4 | | | 3.0 | | | 12.5 | 2.1 | 6.6 | ND | 10.9 | ND | 6.6 | ND | 5.0 | 1.4 | 7.2 | 16.5 | 6.6 | ND | 7.3 | 1.4 | | 1.0 | | , , | 7 7 | ND
ND | 4.2 | 1.8 | 5.8 | 1.8 | 7.7 | <1.2 | 5.1 | ND | 7.3 | ND | 6.6
11.2 | ND
ND | 5.7 | ND | 7.2 | ND | 10.6 | ND
2.2 | 7.3
11.6 | 1.4
1.5 | 12.6 | 1.9 | | 4 | 7.7
10.9 | ND | | | 5.8
10.3 | 1.8
2.1 | 7.7
9.0 | <1.2
1.2 | 5.1
6.8 | ND
2.0 | | | 6.6
11.2
9.4 | ND
ND
ND | 5.7
13.5 | ND
1.5 | 7.2
7.6 | ND
ND | 10.6
5.2 | ND
2.2
1.3 | 7.3
11.6
4.7 | 1.4
1.5
ND | 12.6
8.1 | 2.4 | | 4
Average | 7.7
10.9
8.5 | | 4.2 | 1.8 | 5.8 | 1.8 | 7.7 | <1.2 | 5.1 | ND | 7.3 | ND | 6.6
11.2 | ND
ND | 5.7 | ND | 7.2 | ND | 10.6 | ND
2.2 | 7.3
11.6 | 1.4
1.5 | 12.6 | | | | 10.9 | ND
ND | 4.2
7.1 | 1.8 | 5.8
10.3
9.6 | 1.8
2.1
1.9 | 7.7
9.0
7.9 | <1.2
1.2
1.5 | 5.1
6.8
7.5 | ND
2.0
ND | 7.3
5.8
8.0 | ND
ND | 6.6
11.2
9.4
7.5
8.7 | ND
ND
ND
ND | 5.7
13.5
8.1 | ND
1.5
2.7 | 7.2
7.6
9.1 | ND
ND
ND | 10.6
5.2
5.7 | ND
2.2
1.3
ND | 7.3
11.6
4.7
8.6 | 1.4
1.5
ND
1.7 | 12.6
8.1
7.2 | 2.4
3.0 | | | 10.9 | ND
ND
ND | 4.2
7.1 | 1.8
2.1
2.3 | 5.8
10.3
9.6 | 1.8
2.1
1.9
1.5 | 7.7
9.0
7.9 | <1.2
1.2
1.5
1.6 | 5.1
6.8
7.5 | ND
2.0
ND
0.5 | 7.3
5.8
8.0 | ND
ND
ND | 6.6
11.2
9.4
7.5
8.7 | ND
ND
ND
ND | 5.7
13.5
8.1 | ND
1.5
2.7
1.4 | 7.2
7.6
9.1 | ND
ND
ND
4.1 | 10.6
5.2
5.7 | ND
2.2
1.3
ND
0.9 | 7.3
11.6
4.7
8.6 | 1.4
1.5
ND
1.7 | 12.6
8.1
7.2 | 2.4
3.0
2.4 | | Average | 10.9
8.5 | ND
ND
ND | 4.2
7.1
5.8 | 1.8
2.1
2.3 | 5.8
10.3
9.6
8.1 | 1.8
2.1
1.9
1.5 | 7.7
9.0
7.9
9.3 | <1.2
1.2
1.5
1.6 | 5.1
6.8
7.5
6.5 | ND
2.0
ND
0.5 | 7.3
5.8
8.0
CHROM | ND
ND
ND
EUM (ug/L
JUN | 6.6
11.2
9.4
7.5
8.7 | ND
ND
ND
ND | 5.7
13.5
8.1
8.1 | ND
1.5
2.7
1.4 | 7.2
7.6
9.1
7.8 | ND
ND
ND
4.1 | 10.6
5.2
5.7
7.0 | ND
2.2
1.3
ND
0.9 | 7.3
11.6
4.7
8.6
8.1 | 1.4
1.5
ND
1.7
1.2 | 12.6
8.1
7.2
9.3 | 2.4
3.0
2.4 | | Average
Week | 10.9
8.5
Inf | ND
ND
ND
JAN
Eff | 4.2
7.1
5.8 | 1.8
2.1
2.3
FEB
Eff | 5.8
10.3
9.6
8.1 | 1.8
2.1
1.9
1.5
MAR
Eff | 7.7
9.0
7.9
9.3 | <1.2
1.2
1.5
1.6
APR
Eff | 5.1
6.8
7.5 | ND
2.0
ND
0.5 | 7.3
5.8
8.0
CHROMI | ND ND ND UM (ug/L JUN Eff | 6.6
11.2
9.4
7.5
8.7
) 2008 | ND
ND
ND
ND | 5.7
13.5
8.1
8.1
Inf | ND
1.5
2.7
1.4
AUG
Eff | 7.2
7.6
9.1
7.8 | ND
ND
4.1
SEP
Eff | 10.6
5.2
5.7
7.0 | ND 2.2 1.3 ND 0.9 OCT Eff | 7.3
11.6
4.7
8.6 | 1.4
1.5
ND
1.7 | 12.6
8.1
7.2
9.3 | 2.4
3.0
2.4
DEC
Eff | | Average | 10.9
8.5 | ND
ND
ND | 4.2
7.1
5.8 | 1.8
2.1
2.3 | 5.8
10.3
9.6
8.1 | 1.8
2.1
1.9
1.5 | 7.7
9.0
7.9
9.3 | <1.2
1.2
1.5
1.6 | 5.1
6.8
7.5
6.5 |
ND
2.0
ND
0.5 | 7.3
5.8
8.0
CHROM | ND
ND
ND
EUM (ug/L
JUN | 6.6
11.2
9.4
7.5
8.7 | ND
ND
ND
ND | 5.7
13.5
8.1
8.1 | ND
1.5
2.7
1.4 | 7.2
7.6
9.1
7.8 | ND
ND
ND
4.1 | 10.6
5.2
5.7
7.0 | ND
2.2
1.3
ND
0.9 | 7.3
11.6
4.7
8.6
8.1 | 1.4
1.5
ND
1.7
1.2 | 12.6
8.1
7.2
9.3
Inf
4.9 | 2.4
3.0
2.4 | | Average Week | 10.9
8.5
Inf
5.6 | ND
ND
ND
JAN
Eff | 4.2
7.1
5.8
Inf
16.7 | 1.8
2.1
2.3
FEB
Eff
3.2 | 5.8
10.3
9.6
8.1
Inf | 1.8
2.1
1.9
1.5
MAR
Eff
3.5 | 7.7
9.0
7.9
9.3
Inf
3.9 | <1.2
1.2
1.5
1.6
APR
Eff | 5.1
6.8
7.5
6.5 | ND
2.0
ND
0.5 | 7.3
5.8
8.0
CHROMI
Inf
2.9 | ND ND TUM (ug/L JUN Eff ND | 6.6
11.2
9.4
7.5
8.7
) 2008
Inf | ND ND ND ND TOL Eff 1.3 | 5.7
13.5
8.1
8.1
Inf
6.8 | ND
1.5
2.7
1.4
AUG
Eff
2.4 | 7.2
7.6
9.1
7.8
Inf
8.1 | ND
ND
ND
4.1
SEP
Eff
1.7 | 10.6
5.2
5.7
7.0
Inf
8.0 | ND 2.2 1.3 ND 0.9 OCT Eff ND | 7.3
11.6
4.7
8.6
8.1 | 1.4
1.5
ND
1.7
1.2 | 12.6
8.1
7.2
9.3 | 2.4
3.0
2.4
DEC
Eff | | Average Week 1 2 | 10.9
8.5
Inf
5.6
6
5.9
14.8 | ND ND ND JAN Eff ND ND ND ND ND ND | 4.2
7.1
5.8
Inf
16.7
18.8
4.7
4.4 | 1.8
2.1
2.3
FEB
Eff
3.2
1.8
1.7 | 5.8
10.3
9.6
8.1
Inf
11.7
7.7
6.3
7.6 | 1.8
2.1
1.9
1.5
MAR
Eff
3.5
1.8
2.0
ND | 7.7
9.0
7.9
9.3
Inf
3.9
7.1
9.3
3.2 | <1.2 1.2 1.5 1.6 APR Eff ND ND ND ND ND | 5.1
6.8
7.5
6.5
Inf | ND 2.0 ND 0.5 MAY Eff ND 2.4 ND | 7.3
5.8
8.0
CHROMI
Inf
2.9
4.3
4.9 | ND ND SUM (ug/L JUN Eff ND ND 2.4 3.2 | 6.6
11.2
9.4
7.5
8.7
) 2008
Inf
10.0
6.1
6.4
4.7 | ND N | 5.7
13.5
8.1
8.1
Inf
6.8
5.2
8.8
6.9 | ND
1.5
2.7
1.4
AUG
Eff
2.4
<1.2
2.1
1.3 | 7.2
7.6
9.1
7.8
Inf
8.1
5.5
4.2
8.9 | ND
ND
4.1
SEP
Eff
1.7
1.5
1.4
2.0 | 10.6
5.2
5.7
7.0
Inf
8.0
5.5
3.2
44.4 | ND 2.2 1.3 ND 0.9 OCT Eff ND <1.2 1.4 6.5 | 7.3
11.6
4.7
8.6
8.1
Inf | 1.4
1.5
ND
1.7
1.2
NOV
Eff | 12.6
8.1
7.2
9.3
Inf
4.9
6.3
4.5
3.4 | 2.4
3.0
2.4
DEC
Eff
ND
ND
1.2
1.3 | | Average Week 1 2 3 | 10.9
8.5
Inf
5.6
6
5.9 | ND ND JAN Eff ND ND ND | 4.2
7.1
5.8
Inf
16.7
18.8
4.7 | 1.8
2.1
2.3
FEB
Eff
3.2
1.8
1.7 | 5.8
10.3
9.6
8.1
Inf
11.7
7.7
6.3 | 1.8
2.1
1.9
1.5
MAR
Eff
3.5
1.8
2.0 | 7.7
9.0
7.9
9.3
Inf
3.9
7.1
9.3 | <1.2 1.2 1.5 1.6 APR Eff ND ND ND | 5.1
6.8
7.5
6.5
Inf | ND 2.0 ND 0.5 MAY Eff ND 2.4 | 7.3
5.8
8.0
CHROMI
Inf
2.9
4.3
4.9 | ND ND IUM (ug/L JUN Eff ND ND 2.4 | 6.6
11.2
9.4
7.5
8.7
) 2008
Inf
10.0
6.1
6.4 | ND N | 5.7
13.5
8.1
8.1
Inf
6.8
5.2
8.8 | ND
1.5
2.7
1.4
AUG
Eff
2.4
<1.2
2.1 | 7.2
7.6
9.1
7.8
Inf
8.1
5.5
4.2 | ND
ND
4.1
SEP
Eff
1.7
1.5
1.4 | 10.6
5.2
5.7
7.0
Inf
8.0
5.5
3.2 | ND
2.2
1.3
ND
0.9
OCT
Eff
ND
<1.2
1.4 | 7.3
11.6
4.7
8.6
8.1
Inf | 1.4
1.5
ND
1.7
1.2
NOV
Eff | 12.6
8.1
7.2
9.3
Inf
4.9
6.3
4.5 | 2.4
3.0
2.4
DEC
Eff
ND
ND
1.2 | | Week 1 2 3 4 | 10.9
8.5
Inf
5.6
6
5.9
14.8 | ND ND ND JAN Eff ND ND ND ND ND ND | 4.2
7.1
5.8
Inf
16.7
18.8
4.7
4.4 | 1.8
2.1
2.3
FEB
Eff
3.2
1.8
1.7 | 5.8
10.3
9.6
8.1
Inf
11.7
7.7
6.3
7.6 | 1.8
2.1
1.9
1.5
MAR
Eff
3.5
1.8
2.0
ND | 7.7
9.0
7.9
9.3
Inf
3.9
7.1
9.3
3.2 | <1.2 1.2 1.5 1.6 APR Eff ND ND ND ND ND | 5.1
6.8
7.5
6.5
Inf | ND 2.0 ND 0.5 MAY Eff ND 2.4 ND | 7.3
5.8
8.0
CHROM!
Inf
2.9
4.3
4.9
13.7
6.5 | ND ND TUM (ug/L JUN Eff ND ND 2.4 3.2 1.4 | 6.6
11.2
9.4
7.5
8.7
) 2008
Inf
10.0
6.1
6.4
4.7
6.8 | ND N | 5.7
13.5
8.1
8.1
Inf
6.8
5.2
8.8
6.9 | ND
1.5
2.7
1.4
AUG
Eff
2.4
<1.2
2.1
1.3 | 7.2
7.6
9.1
7.8
Inf
8.1
5.5
4.2
8.9 | ND
ND
4.1
SEP
Eff
1.7
1.5
1.4
2.0 | 10.6
5.2
5.7
7.0
Inf
8.0
5.5
3.2
44.4 | ND 2.2 1.3 ND 0.9 OCT Eff ND <1.2 1.4 6.5 | 7.3
11.6
4.7
8.6
8.1
Inf | 1.4
1.5
ND
1.7
1.2
NOV
Eff | 12.6
8.1
7.2
9.3
Inf
4.9
6.3
4.5
3.4 | 2.4
3.0
2.4
DEC
Eff
ND
ND
1.2
1.3 | | Week 1 2 3 4 | 10.9
8.5
Inf
5.6
6
5.9
14.8 | ND ND ND JAN Eff ND ND ND ND ND ND | 4.2
7.1
5.8
Inf
16.7
18.8
4.7
4.4 | 1.8
2.1
2.3
FEB
Eff
3.2
1.8
1.7 | 5.8
10.3
9.6
8.1
Inf
11.7
7.7
6.3
7.6 | 1.8
2.1
1.9
1.5
MAR
Eff
3.5
1.8
2.0
ND | 7.7
9.0
7.9
9.3
Inf
3.9
7.1
9.3
3.2 | <1.2 1.2 1.5 1.6 APR Eff ND ND ND ND ND | 5.1
6.8
7.5
6.5
Inf | ND 2.0 ND 0.5 MAY Eff ND 2.4 ND | 7.3
5.8
8.0
CHROM!
Inf
2.9
4.3
4.9
13.7
6.5 | ND ND SUM (ug/L JUN Eff ND ND 2.4 3.2 | 6.6
11.2
9.4
7.5
8.7
) 2008
Inf
10.0
6.1
6.4
4.7
6.8 | ND N | 5.7
13.5
8.1
8.1
Inf
6.8
5.2
8.8
6.9 | ND
1.5
2.7
1.4
AUG
Eff
2.4
<1.2
2.1
1.3 | 7.2
7.6
9.1
7.8
Inf
8.1
5.5
4.2
8.9 | ND
ND
4.1
SEP
Eff
1.7
1.5
1.4
2.0 | 10.6
5.2
5.7
7.0
Inf
8.0
5.5
3.2
44.4 | ND 2.2 1.3 ND 0.9 OCT Eff ND <1.2 1.4 6.5 | 7.3
11.6
4.7
8.6
8.1
Inf | 1.4
1.5
ND
1.7
1.2
NOV
Eff | 12.6
8.1
7.2
9.3
Inf
4.9
6.3
4.5
3.4 | 2.4
3.0
2.4
DEC
Eff
ND
ND
1.2
1.3 | | Week 1 2 3 4 | 10.9
8.5
Inf
5.6
6
5.9
14.8 | ND ND ND JAN Eff ND ND ND ND ND ND ND ND | 4.2
7.1
5.8
Inf
16.7
18.8
4.7
4.4 | 1.8
2.1
2.3
FEB
Eff
3.2
1.8
1.7
1.6
2.1 | 5.8
10.3
9.6
8.1
Inf
11.7
7.7
6.3
7.6 | 1.8
2.1
1.9
1.5
MAR
Eff
3.5
1.8
2.0
ND | 7.7
9.0
7.9
9.3
Inf
3.9
7.1
9.3
3.2 | <1.2 1.2 1.5 1.6 APR Eff ND ND ND ND ND | 5.1
6.8
7.5
6.5
Inf
10.3
12.1
3.9
8.8 | ND 2.0 ND 0.5 MAY Eff ND 2.4 ND 0.8 | 7.3
5.8
8.0
CHROM!
Inf
2.9
4.3
4.9
13.7
6.5 | ND ND UM (ug/L JUN Eff ND ND 2.4 3.2 1.4 LUM (ug/L LUM (ug/L LUM (ug/L LUM (ug/L LUM ND ND ND LUM (ug/L LUM (ug/L LUM (ug/L LUM (ug/L LUM ND | 6.6
11.2
9.4
7.5
8.7
) 2008
Inf
10.0
6.1
6.4
4.7
6.8 | ND ND ND ND SUL Eff 1.3 ND | 5.7
13.5
8.1
8.1
Inf
6.8
5.2
8.8
6.9 | ND 1.5 2.7 1.4 AUG Eff 2.4 <1.2 2.1 1.3 | 7.2
7.6
9.1
7.8
Inf
8.1
5.5
4.2
8.9 | ND
ND
ND
4.1
SEP
Eff
1.7
1.5
1.4
2.0 | 10.6
5.2
5.7
7.0
Inf
8.0
5.5
3.2
44.4 | ND 2.2 1.3 ND 0.9 OCT Eff ND <1.2 1.4 6.5 2.0 | 7.3
11.6
4.7
8.6
8.1
Inf | 1.4
1.5
ND
1.7
1.2
NOV
Eff
2.3
1.5
3.0
2.3 | 12.6
8.1
7.2
9.3
Inf
4.9
6.3
4.5
3.4 | 2.4
3.0
2.4
DEC
Eff
ND
ND
1.2
1.3 | | Week 1 2 3 4 Average | 10.9
8.5
Inf
5.6
6
5.9
14.8
8.1
Inf
2.8 | ND ND ND JAN Eff ND ND ND ND ND ND ND 1.4 | 4.2
7.1
5.8
Inf
16.7
18.8
4.7
4.4
11.2 | 1.8
2.1
2.3
FEB
Eff
3.2
1.8
1.7
1.6
2.1 | 5.8
10.3
9.6
8.1
Inf
11.7
7.7
6.3
7.6
8.3 | 1.8
2.1
1.9
1.5
MAR
Eff
3.5
1.8
2.0
ND
1.8 | 7.7
9.0
7.9
9.3
Inf
3.9
7.1
9.3
3.2
5.9 | <1.2 1.2 1.5 1.6 APR Eff ND ND ND ND ND APR Eff 2.0 | 5.1
6.8
7.5
6.5
Inf
10.3
12.1
3.9
8.8 | ND 2.0 ND 0.5 MAY Eff ND 2.4 ND 0.8 MAY Eff 2.7 | 7.3
5.8
8.0
CHROM:
Inf
2.9
4.3
4.9
13.7
6.5
CHROM: | ND ND ND Ug/L JUN Eff 1.4 | 6.6
11.2
9.4
7.5
8.7
) 2008
Inf
10.0
6.1
6.4
4.7
6.8
) 2009
Inf
5.0 | ND N | 5.7
13.5
8.1
8.1
Inf
6.8
5.2
8.8
6.9
6.9 | ND 1.5 2.7 1.4 AUG Eff 2.4 <1.2 2.1 1.3 1.5 AUG Eff <1.2 1.5 | 7.2
7.6
9.1
7.8
Inf
8.1
5.5
4.2
8.9
6.7 | ND ND ND ND 1.1 SEP Eff 1.7 1.5 1.4 2.0 1.7 SEP Eff | 10.6
5.2
5.7
7.0
Inf
8.0
5.5
3.2
44.4
15.3 | ND 2.2 1.3 ND 0.9 OCT Eff ND <1.2 1.4 6.5 2.0 OCT Eff 1.5 | 7.3
11.6
4.7
8.6
8.1
Inf
8.5
5.0
7.6
7.0 | 1.4
1.5
ND
1.7
1.2
NOV
Eff
2.3
1.5
3.0
2.3 | 12.6
8.1
7.2
9.3
Inf
4.9
6.3
4.5
3.4
4.8 | 2.4
3.0
2.4
DEC
Eff
ND
ND
1.2
1.3
0.6 | | Week 1 2 3 4 Average | 10.9
8.5
Inf
5.6
6
5.9
14.8
8.1
Inf
2.8
3.7 | ND ND ND STAN ND | 4.2
7.1
5.8
Inf
16.7
18.8
4.7
4.4
11.2 | 1.8
2.1
2.3
FEB
Eff
3.2
1.8
1.7
1.6
2.1 | 5.8
10.3
9.6
8.1
Inf
11.7
7.7
6.3
7.6
8.3 | 1.8
2.1
1.9
1.5
MAR
Eff
3.5
1.8
2.0
ND
1.8 | 7.7
9.0
7.9
9.3
Inf
3.9
7.1
9.3
3.2
5.9 | <1.2 1.2 1.5 1.6 APR Eff ND ND ND ND APR Eff 2.0 2.2 |
5.1
6.8
7.5
6.5
Inf
10.3
12.1
3.9
8.8 | ND 2.0 ND 0.5 MAY Eff ND 2.4 ND 0.8 MAY Eff 2.7 6.8 | 7.3
5.8
8.0
CHROM:
Inf
2.9
4.3
4.9
13.7
6.5
CHROM:
Inf
9.3
5.8 | ND ND ND Ug/L JUN Eff ND ND 2.4 3.2 1.4 Ug/L JUN EUM (ug/L JUN Eff 2.0 1.5 | 6.6
11.2
9.4
7.5
8.7
) 2008
Inf
10.0
6.1
6.4
4.7
6.8
) 2009
Inf
5.0
7.1 | ND N | 5.7
13.5
8.1
8.1
Inf
6.8
5.2
8.8
6.9
6.9 | AUG
Eff
2.4
<1.2
2.1
1.3
1.5
AUG
Eff
<1.2
2.1
1.3 | 7.2
7.6
9.1
7.8
Inf
8.1
5.5
4.2
8.9
6.7 | ND ND ND 4.1 SEP Eff 1.7 1.5 1.4 2.0 1.7 | 10.6
5.2
5.7
7.0
Inf
8.0
5.5
3.2
44.4
15.3 | ND 2.2 1.3 ND 0.9 OCT Eff ND <1.2 1.4 6.5 2.0 OCT Eff 1.5 1.6 | 7.3
11.6
4.7
8.6
8.1
Inf
8.5
5.0
7.6
7.0 | 1.4
1.5
ND
1.7
1.2
NOV
Eff
2.3
1.5
3.0
2.3
NOV
Eff
1.9
2.8 | 12.6
8.1
7.2
9.3
Inf
4.9
6.3
4.5
3.4
4.8 | 2.4
3.0
2.4
DEC
Eff
ND
ND
1.2
1.3
0.6 | | Week 1 2 3 4 Average | Inf
5.6
6
5.9
14.8
8.1
Inf
2.8
3.7
3.5 | ND N | 4.2
7.1
5.8
Inf
16.7
18.8
4.7
4.4
11.2 | 1.8
2.1
2.3
FEB
Eff
3.2
1.8
1.7
1.6
2.1
FEB
Eff
2.7
1.8 | 5.8
10.3
9.6
8.1
Inf
11.7
7.7
6.3
7.6
8.3
Inf | 1.8
2.1
1.9
1.5
MAR
Eff
3.5
1.8
2.0
ND
1.8 | 7.7
9.0
7.9
9.3
Inf
3.9
7.1
9.3
3.2
5.9
Inf
6.4
10.5
9.5 | <1.2 1.2 1.5 1.6 APR Eff ND N | 5.1
6.8
7.5
6.5
Inf
10.3
12.1
3.9
8.8 | ND 2.0 ND 0.5 MAY Eff ND 2.4 ND 0.8 MAY Eff 2.7 6.8 4.0 | 7.3
5.8
8.0
CHROM:
Inf
2.9
4.3
4.9
13.7
6.5
CHROM:
Inf
9.3
5.8
5.1 | ND ND ND Ug/L JUN Eff ND ND 2.4 3.2 1.4 EUM (ug/L JUN Eff 2.0 1.5 2.9 | 6.6
11.2
9.4
7.5
8.7
) 2008
Inf
10.0
6.1
6.4
4.7
6.8
) 2009
Inf
5.0
7.1
8.1 | ND N | 5.7
13.5
8.1
8.1
Inf
6.8
5.2
8.8
6.9
6.9 | ND 1.5 2.7 1.4 AUG Eff 2.4 <1.2 2.1 1.3 1.5 AUG Eff <1.2 2.1 5.3 1.5 | 7.2
7.6
9.1
7.8
Inf
8.1
5.5
4.2
8.9
6.7 | ND N | 10.6
5.2
5.7
7.0
Inf
8.0
5.5
3.2
44.4
15.3 | ND 2.2 1.3 ND 0.9 OCT Eff ND <1.2 1.4 6.5 2.0 OCT Eff 1.5 1.6 1.3 | 7.3
11.6
4.7
8.6
8.1
Inf
8.5
5.0
7.6
7.0 | 1.4
1.5
ND
1.7
1.2
NOV
Eff
2.3
1.5
3.0
2.3
NOV
Eff
1.9
2.8 | 12.6
8.1
7.2
9.3
Inf
4.9
6.3
4.5
3.4
4.8 | 2.4
3.0
2.4
DEC
Eff
ND
ND
1.2
1.3
0.6 | | Week 1 2 3 4 Average | 10.9
8.5
Inf
5.6
6
5.9
14.8
8.1
Inf
2.8
3.7 | ND ND ND STAN ND | 4.2
7.1
5.8
Inf
16.7
18.8
4.7
4.4
11.2 | 1.8
2.1
2.3
FEB
Eff
3.2
1.8
1.7
1.6
2.1 | 5.8
10.3
9.6
8.1
Inf
11.7
7.7
6.3
7.6
8.3 | 1.8
2.1
1.9
1.5
MAR
Eff
3.5
1.8
2.0
ND
1.8 | 7.7
9.0
7.9
9.3
Inf
3.9
7.1
9.3
3.2
5.9 | <1.2 1.2 1.5 1.6 APR Eff ND ND ND ND APR Eff 2.0 2.2 | 5.1
6.8
7.5
6.5
Inf
10.3
12.1
3.9
8.8 | ND 2.0 ND 0.5 MAY Eff ND 2.4 ND 0.8 MAY Eff 2.7 6.8 | 7.3
5.8
8.0
CHROM:
Inf
2.9
4.3
4.9
13.7
6.5
CHROM:
Inf
9.3
5.8 | ND ND ND Ug/L JUN Eff ND ND 2.4 3.2 1.4 Ug/L JUN EUM (ug/L JUN Eff 2.0 1.5 | 6.6
11.2
9.4
7.5
8.7
) 2008
Inf
10.0
6.1
6.4
4.7
6.8
) 2009
Inf
5.0
7.1 | ND N | 5.7
13.5
8.1
8.1
Inf
6.8
5.2
8.8
6.9
6.9 | AUG
Eff
2.4
<1.2
2.1
1.3
1.5
AUG
Eff
<1.2
2.1
1.3 | 7.2
7.6
9.1
7.8
Inf
8.1
5.5
4.2
8.9
6.7 | ND ND ND 4.1 SEP Eff 1.7 1.5 1.4 2.0 1.7 | 10.6
5.2
5.7
7.0
Inf
8.0
5.5
3.2
44.4
15.3 | ND 2.2 1.3 ND 0.9 OCT Eff ND <1.2 1.4 6.5 2.0 OCT Eff 1.5 1.6 | 7.3
11.6
4.7
8.6
8.1
Inf
8.5
5.0
7.6
7.0 | 1.4
1.5
ND
1.7
1.2
NOV
Eff
2.3
1.5
3.0
2.3
NOV
Eff
1.9
2.8 | 12.6
8.1
7.2
9.3
Inf
4.9
6.3
4.5
3.4
4.8 | 2.4
3.0
2.4
DEC
Eff
ND
ND
1.2
1.3
0.6 | | | | | | | | | | | | | COPPE | R (ug/L) | 2004 | | | | | | | | | | | | |-----------------------------|--|--|--|---|-----------------------------------|---|---|--|---|--|--|---|--|---|--|--|------------------------------------|--|--|---------------------------------------|---|--|---|--| | | | JAN | | FEB | | MAR | | APR | | MAY | | JUN | | JUL | | AUG | | SEP | | OCT | | NOV | | DEC | | Week | Inf
144 | Eff
49 | Inf | Eff | Inf
121 | Eff | Inf
158 | Eff | Inf
107 | Eff | Inf
95 | Eff
54 | Inf
105 | Eff | Inf
93 | Eff | Inf
100 | Eff | Inf
113 | Eff | Inf | Eff
F1 | Inf | Eff
27 | | 1
2 | 127 | 49
61 | 202 | 118 | 140 | 40
47 | 169 | 47
44 | 169 | 86
91 | 125 | 65 | 97 | 56
28 | 93
145 | 29
52 | 124 | 43
25 | 90 | 22
30 | 116
106 | 51
30 | 115
123 | 27
21 | | 3 | 118 | 61 | 181 | 24 | 134 | 110 | 133 | 48 | 124 | 17 | 103 | 47 | 27 | 20 | 127 | 31 | 74 | 29 | 100 | 26 | 99 | 23 | 146 | 22 | | 4 | 131 | 29 | 91 | 51 | 231 | 82 | 134 | 38 | 82 | 19 | 116 | 32 | 83 | 29 | 144 | 34 | 77 | 28 | 73 | 24 | 103 | 20 | 82 | 23 | | Avg | 130 | 50 | 158 | 64 | 157 | 70 | 149 | 44 | 121 | 53 | 110 | 50 | 95 | 38 | 127 | 37 | 94 | 31 | 94 | 26 | 106 | 31 | 117 | 23 | JAN | | FFD | | MAR | | APR | | MAY | COPPE | R (ug/L) | 2005 | 7111 | | AUG | | SEP | | ОСТ | | NOV | | DEC | | Week | Inf | Eff | Inf | FEB
Eff | Inf | MAK
Eff | Inf | Eff | Inf | MAY
Eff | Inf | JUN
Eff | Inf | JUL
Eff | Inf | Eff | | 1 | T111 | LII | 83 | 72 | 62 | 23 | 98 | 27 | ZIII | LII | 108 | 50 | 97 | 22 | 112 | 23 | 96 | 30 | 142 | 18 | 1111 | LII | 71 | 27 | | 2 | 74 | 39 | 98 | 37 | 85 | 30 | 134 | 27 | 95 | 28 | 106 | 25 | 119 | 17 | 97 | 20 | 118 | 16 | 94 | 14 | 173 | 25 | 62 | 34 | | 3 | 73 | 25 | 122 | 30 | 69 | 22 | 120 | 44 | 82 | 25 | 118 | 31 | 68 | 34 | 102 | 19 | 89 | 13 | 61 | 31 | 132 | 32 | 62 | 22 | | 4 | 85 | 36 | 67 | 28 | 82 | 22 | 92 | 28 | 114 | 34 | 111 | 25 | 204 | 33 | 97 | 22 | 105 | 19 | 115 | 25 | 92 | 24 | 49 | 22 | | Average | 77 | 33 | 93 | 42 | 75 | 24 | 111 | 32 | 97 | 29 | 111 | 33 | 122 | 27 | 101 | 21 | 102 | 20 | 103 | 22 | 133 | 27 | 61 | 26 | | | | | | | | | | | | | CODD | 'D (/L) | 2006 | | | | | | | | | | | | | | | JAN | | FEB | | MAR | | APR | | MAY | COPPE | R (ug/L)
JUN | 2006 | JUL | | AUG | | SEP | | ОСТ | | NOV | | DEC | | Week | Inf | Eff | 1 | 115 | 28 | 49 | 20 | 66 | 19 | 64 | 22 | 169 | 19 | 104 | 26 | 117 | 24 | 95 | 18 | 108 | 17 | 112 | 14 | 109 | 15 | 84 | ND | | 2 | 83 | 22 | 86 | 30 | 62 | 18 | 82 | 24 | 123 | 17 | 114 | 27 | 205 | 18 | 97 | 22 | 106 | 13 | 143 | 42 | 76 | 39 | 76 | ND | | 3 | 72 | 19 | 47 | 20 | 60 | 11 | 71 | 23 | 104 | 19 | 89 | 20 | 101 | 26 | 100 | 24 | 73 | 29 | 57 | 8 | 67 | 12 | 79 | ND | | 4 | 92 | 20 | 51 | 17 | | | 115 | 42 | 101 | 28 | 105 | 28 | 71 | 23 | 106 | 15 | | | 123 | 14 | 77 | 19 | 62 | ND | | Average | 91 | 22 | 58 | 22 | 63 | 16 | 83 | 28 | 124 | 21 | 103 | 25 | 124 | 23 | 100 | 20 | 96 | 20 | 109 | 20 | 82 | 21 | 75.3 | ND | | | | | | | | | | | | | COPPE | R (ug/L) | 2007 | | | | | | | | | | | | | | | JAN | | FEB | | MAR | | APR | | MAY | 20.12 | JUN | 2007 | JUL | | AUG | | SEP | | OCT | | NOV | | DEC | | Week | Inf | Eff | 1 | 92 | 15 | 52 | 26 | 79 | 14 | 104 | 15 | 79 | 9 | 139 | 15 | 106 | 14 | 96 | 48 | 85 | 18 | 117 | 18 | 90 | 11 | | | | 2 | 80 | 14 | 32 | 16 | 87 | 16 | 93 | 15 | 89 | 8 | 100 | 12 | 118 | 33 | 112 | 10 | 96 | 16 | 97 | 14 | 94 | 18 | 75 | 11 | | 3 | 60 | 15 | 47 | 13 | 94 | 14 | 92 | 12 | 97 | 9 | 102 | 11 | 135 | 27 | 84 | 51 | 120 | 10 | 76 | 7 | 68 | 21 | 87 | 12 | | 4
Average | 99
83 | 14
15 | 44 | 18 | 99
90 | 10
14 | 99
97 | 17
15 | 91
89 | 9 | 114 | 13 | 112
118 | 65
35 | 102
99 | 11
30 | 117
105 | 13 | 93
96 | 6
11 | 91
86 | 11
15 | 79
80 | 17
13 | | Average | 63 | 13 | 44 | 10 | 50 | 14 | 37 | 15 | 65 | , | 114 | 13 | 110 | 33 | 33 | 30 | 103 | 13 | 90 | 11 | 80 | 13 | 86 | 13 | COPPE | R (ug/L) | 2008 | | | | | | | | | | | | | | | JAN | | FEB | | MAR | | APR | | MAY | COPPE | JUN | | JUL | | AUG | | SEP | | ОСТ | | NOV | | DEC | | Week | Inf | Eff | Inf | Eff | Inf | Eff | Inf | Eff | Inf | MAY
Eff | Inf | JUN
Eff | Inf | Eff | Inf | Eff | Inf | Eff | Inf | Eff | Inf | NOV
Eff | Inf | Eff | | 1 | 60 | Eff
11 | 66 | Eff
17 | 88 |
Eff
20 | 75 | Eff
22 | | Eff | Inf
73 | JUN
Eff
22 | Inf
111 | Eff
15 | 113 | Eff
20 | 70 | Eff
20 | 91 | Eff
19 | | Eff | 130 | Eff
25 | | 1 2 | 60
100 | Eff
11
14 | 66
153 | Eff
17
16 | 88
93 | 20
23 | 75
93 | 22
21 | 86 | Eff
22 | Inf
73
100 | JUN
Eff
22
24 | Inf
111
102 | Eff
15
15 | 113
106 | Eff
20
14 | 70
97 | Eff
20
21 | 91
105 | Eff
19
17 | 91 | Eff
18 | 130
111 | Eff
25
22 | | 1 | 60
100
84 | 11
14
10 | 66
153
76 | 17
16
15 | 88
93
84 | 20
23
21 | 75
93
98 | 22
21
18 | 86
77 | 22
18 | Inf
73
100
117 | JUN
Eff
22
24
35 | Inf
111
102
109 | 15
15
14 | 113
106
131 | 20
14
16 | 70
97
89 | 20
21
22 | 91
105
48 | 19
17
17 | 91
88 | 18
19 | 130
111
81 | 25
22
24 | | 1
2
3 | 60
100 | Eff
11
14 | 66
153 | Eff
17
16 | 88
93 | 20
23 | 75
93 | 22
21 | 86 | Eff
22 | Inf
73
100 | JUN
Eff
22
24 | Inf
111
102 | Eff
15
15 | 113
106 | Eff
20
14 | 70
97 | Eff
20
21 | 91
105 | Eff
19
17 | 91 | Eff
18 | 130
111 | Eff
25
22 | | 1
2
3
4 | 60
100
84
71 | Eff
11
14
10
8 | 66
153
76
63 | Eff
17
16
15
18 | 88
93
84
77 | 20
23
21
15 | 75
93
98
91 | 22
21
18
17 | 86
77
70 | 22
18
21 | Inf
73
100
117
121
103 | JUN
Eff
22
24
35
17
25 | Inf
111
102
109
103
106 | Eff
15
15
14
22 | 113
106
131
125 | 20
14
16
16 | 70
97
89
110 | 20
21
22
78 | 91
105
48
106 | 19
17
17
23 | 91
88
106 | 18
19
22 | 130
111
81
78 | Eff
25
22
24
20 | | 1
2
3
4 | 60
100
84
71 | Eff
11
14
10
8
11 | 66
153
76
63 | Eff
17
16
15
18
17 | 88
93
84
77 | 20
23
21
15
20 | 75
93
98
91 | 22
21
18
17
20 | 86
77
70 | 22
18
21
20 | Inf
73
100
117
121
103 | JUN
Eff
22
24
35
17
25 | Inf
111
102
109
103
106 | Eff
15
15
14
22
17 | 113
106
131
125 | Eff
20
14
16
16
17 | 70
97
89
110 | Eff
20
21
22
78
35 | 91
105
48
106 | Eff
19
17
17
23
19 | 91
88
106 | 18
19
22
20 | 130
111
81
78 | 25
22
24
20
23 | | 1
2
3
4
Average | 60
100
84
71
79 | Eff
11
14
10
8
11 | 66
153
76
63
90 | Eff
17
16
15
18
17 | 88
93
84
77
86 | 20
23
21
15
20 | 75
93
98
91
89 | 22
21
18
17
20 | 86
77
70
78 | 22
18
21
20 | Inf
73
100
117
121
103 | JUN
Eff
22
24
35
17
25
ER (ug/L)
JUN | Inf
111
102
109
103
106 | Eff
15
15
14
22
17 | 113
106
131
125
119 | 20
14
16
16
17 | 70
97
89
110
92 | 20
21
22
78
35 | 91
105
48
106
88 | Eff
19
17
17
23
19 | 91
88
106
95 | 18
19
22
20
NOV | 130
111
81
78
100 | 25
22
24
20
23 | | 1
2
3
4 | 60
100
84
71 | Eff
11
14
10
8
11 | 66
153
76
63 | Eff
17
16
15
18
17 | 88
93
84
77 | 20
23
21
15
20 | 75
93
98
91
89 | 22
21
18
17
20
APR
Eff | 86
77
70
78 | 22
18
21
20
MAY
Eff | Inf
73
100
117
121
103 | JUN
Eff
22
24
35
17
25
ER (ug/L)
JUN
Eff | Inf
111
102
109
103
106 | Eff
15
15
14
22
17
JUL
Eff | 113
106
131
125 | 20
14
16
16
17
AUG
Eff | 70
97
89
110 | Eff
20
21
22
78
35 | 91
105
48
106
88 | Eff
19
17
17
23
19 | 91
88
106
95 | 18
19
22
20
NOV
Eff | 130
111
81
78
100 | 25
22
24
20
23
DEC
Eff | | 1
2
3
4
Average | 60
100
84
71
79 | Eff
11
14
10
8
11
JAN
Eff | 66
153
76
63
90 | Eff
17
16
15
18
17
FEB
Eff | 88
93
84
77
86 | 20
23
21
15
20 | 75
93
98
91
89 | 22
21
18
17
20 | 86
77
70
78 | 22
18
21
20 | Inf
73
100
117
121
103
COPPE | JUN
Eff
22
24
35
17
25
ER (ug/L)
JUN | Inf
111
102
109
103
106
2009 | Eff
15
15
14
22
17 | 113
106
131
125
119 | 20
14
16
16
17 | 70
97
89
110
92 | 20
21
22
78
35 | 91
105
48
106
88 | Eff
19
17
17
23
19 | 91
88
106
95 | 18
19
22
20
NOV | 130
111
81
78
100 | 25
22
24
20
23
DEC
Eff | | 1
2
3
4
Average | 60
100
84
71
79
Inf | Eff
11
14
10
8
11
JAN
Eff
28 | 66
153
76
63
90
Inf | Eff
17
16
15
18
17
FEB
Eff
34 | 88
93
84
77
86 | Eff
20
23
21
15
20
MAR
Eff | 75
93
98
91
89
Inf | 22
21
18
17
20
APR
Eff | 86
77
70
78
Inf | 22
18
21
20
MAY
Eff
25 | Inf 73 100 117 121 103 COPPE Inf | JUN
Eff
22
24
35
17
25
ER (ug/L)
JUN
Eff
22 | Inf 111 102 109 103 106 2009 Inf 120 | Eff 15 15 14 22 17 JUL Eff 22 | 113
106
131
125
119
Inf | 20
14
16
16
17
AUG
Eff | 70
97
89
110
92 | 20
21
22
78
35
SEP
Eff | 91
105
48
106
88
Inf
253.0 | Eff 19 17 17 23 19 OCT Eff 13.3 | 91
88
106
95
Inf
107.0 | 18
19
22
20
NOV
Eff
15.4 | 130
111
81
78
100
Inf | 25
22
24
20
23
DEC
Eff | | 1 2 3 4 Average | 60
100
84
71
79
Inf
64
85 | Eff
11
14
10
8
11
JAN
Eff
28
21 | 66
153
76
63
90
Inf
138
106 | Eff
17
16
15
18
17
FEB
Eff
34
26 | 88
93
84
77
86
Inf | Eff
20
23
21
15
20
MAR
Eff | 75
93
98
91
89
Inf
104
105 | 22
21
18
17
20
APR
Eff
17
13 | 86
77
70
78
Inf
118
125 | 22
18
21
20
MAY
Eff
25
23 | Inf 73 100 117 121 103 COPPE Inf 127 103 | JUN
Eff
22
24
35
17
25
ER (ug/L)
JUN
Eff
22
15 | Inf 111 102 109 103 106 2009 Inf 120 110 | Eff 15 15 14 22 17 JUL Eff 22 22 | 113
106
131
125
119
Inf
134
117 | Eff 20 14 16 16 17 AUG Eff 22 21 | 70
97
89
110
92
Inf | 20
21
22
78
35
SEP
Eff | 91
105
48
106
88
Inf
253.0
90.2 | Eff 19 17 17 23 19 OCT Eff 13.3 16.4 | 91
88
106
95
Inf
107.0
52.0 | 18
19
22
20
NOV
Eff
15.4
16.9 | 130
111
81
78
100
Inf
110
40.6 | 25
22
24
20
23
DEC
Eff
15.6
18.6 | | | | | | | | | | | | | LEAD | (ug/L) 20 | 04 | | | | | | | | | | | | |-----------|----------|------------|----------|------------|-----------|------------|-----------|------------|----------|------------|-----------|------------|-----------|------------|------|------------|------------|------------|------|------------|------------|------------|------------|------------| | | | JAN | | FEB | | MAR | | APR | | MAY | | JUN | | JUL | | AUG | | SEP | | OCT | | NOV | | DEC | | Week | Inf | Eff | 1 | 25 | ND | | | ND 5.9 | ND | 3.2 | ND | 4.5 | ND | 4 | ND | 4.2 | <1.4 | 2.8 | ND | | 2 | ND | ND | ND | 23 | ND | ND | ND | ND | ND | ND | 3.6 | ND | 4.7 | ND | 4.9 | ND | 2 | ND | 5.2 | 1.9 | 2.3 | ND | ND | ND | | 3 | ND | <18.0 | ND 5 | 1.9 | 2.0 | ND | 5.4 | ND | 2.3 | ND | 8.7 | 2 | 3 | ND | 3.3 | ND | | 4 | ND . | ND
0 | ND
ND | 7.7 | ND
ND | ND
ND | ND
ND | 18
4.5 | ND
ND | ND
ND | 3.7 | ND
0.5 | 4.5 | ND
ND | 6.3 | ND
ND | ND
3 | ND
ND | 5.5 | ND
1.95 | 2.9
3.1 | ND
Ø | 2 | ND
ND | | Avg | 6.3 | 0 | ND | 7.7 | ND | ND | ND | 4.5 | ND | ND | 3./ | 0.5 | 4.5 | ND | 5 | ND | 3 | ND | 5.5 | 1.95 | 3.1 | О | 2 | ND | | | | | | | | | | | | | LEAD | (ug/L) 20 | 05 | | | | | | | | | | | | | | | JAN | | FEB | | MAR | | APR | | MAY | | JUN | | JUL | | AUG | | SEP | | OCT | | NOV | | DEC | | Week | Inf | Eff | 1 | | | 1.5 | ND | ND | ND | ND | ND | | | 2.1 | <1.4 | 5 | ND | 3.5 | ND | 1.8 | ND | 4.7 | ND | | | ND | ND | | 2 | ND 4.3 | ND | 3.3 | ND | 3.4 | ND | 1.6 | ND | 4 | ND | 2.6 | ND | 2.3 | ND | 3.1 | ND | | 3 | ND <1.4 | 2.9 | ND | 2.5 | ND | 2.8 | ND | 1.6 | ND | 3.9 | ND | ND | ND | 3.4 | ND | ND | ND | | 4 | ND 4.8 | ND | 3.3 | ND | 2.4 | ND | ND | ND | 6.1 | ND | 3.5 | ND | 5 | ND | ND | ND | | Average | ND | ND | 0.4 | ND | ND | ND | ND | 0 | 4 | ND | 2.8 | 0 | 3.4 | ND | 1.7 | ND | 4 | ND | 2.7 | ND | 3.6 | ND | 0.8 | ND | | | | | | | | | | | | | LEAD | (ug/L) 20 | 96 | | | | | | | | | | | | | | | JAN | | FEB | | MAR | | APR | | MAY | LEAD | JUN | 00 | JUL | | AUG | | SEP | | OCT | | NOV | | DEC | | Week | Inf | Eff | 1 | 3.6 | 2.6 | 2.5 | ND | 2.3 | ND | 3.1 | ND | 6 | ND | 2.3 | ND | 2.2 | ND | 5.8 | 0 | 4.9 | ND | 3.7 | ND | 4.9 | ND | 2.8 | ND | | 2 | 3.5 | ND | 2.7 | ND | 3.5 | ND | 7.5 | 1.9 | 4.2 | 1.9 | 3.2 | 1.8 | 11.7 | 1.8 | 5.7 | 1.5 | 5.7 | ND | 2.2 | ND | 3.2 | ND | ND | ND | | 3 | 1.7 | ND | 3.4 | 2.1 | ND | ND | 5.1 | ND | 4.3 | ND | 4.9 | ND | 10.9 | 5.3 | 5.8 | 3 | 3.7 | ND | ND | ND | 1.9 | ND | 2.4 | ND | | 4 | 3.1 | 2.3 | 3.4 | ND
 | | 5.8 | ND | 3.8 | ND | 5.1 | ND | 4.1 | ND | 4.4 | 1.7 | | | ND | ND | 2.7 | ND | ND | ND | | Average | 3.0 | 1.2 | 3.0 | 0.5 | 1.9 | ND | 5.4 | 0.5 | 4.6 | 0.5 | 3.9 | 0.5 | 7.2 | 1.8 | 5.4 | 1.6 | 4.8 | ND | 1.5 | ND | 3.2 | ND | 1.3 | ND | 744 | | FFD | | MAD | | ADD | | MAY | LEAD | (ug/L) 20 | 07 | 7111 | | ALIC | | SEP | | ОСТ | | NOV | | DEC | | Week | Inf | JAN
Eff | Inf | FEB
Eff | Inf | MAR
Eff | Inf | APR
Eff | Inf | MAY
Eff | Inf | JUN
Eff | Inf | JUL
Eff | Inf | AUG
Eff | Inf | SEP
Eff | Inf | OCT
Eff | Inf | NOV
Eff | Inf | DEC
Eff | | 1 | 4.6 | ND | ND | ND | 6.6 | ND ND | 3.1 | ND ND | ND | ND | 2.9 | ND ND | ND | ND | 3.7 | ND ND | ND | ND ND | 3.8 | ND | 2.9 | ND | THT | ETT | | 2 | ND | ND | ND | ND | 5.8 | ND | ND | ND | 2.2 | ND | ND | ND | 6.7 | ND | ND | ND | ND | ND | 2.7 | ND | 2.1 | ND | ND | ND | | 3 | ND | ND | ND | ND | 5.3 | ND | 4.2 | ND | ND | ND | ND | ND | 2.9 | ND 2.2 | ND | ND | ND | | 4 | 5.6 | ND | | | 3.9 | ND | 2.5 | ND | ND | ND | | | ND | ND | 2.2 | ND | 2.5 | ND | ND | ND | 5.4 | ND | ND | ND | | Average | 2.6 | ND | ND | ND | 5.4 | ND | 2.5 | ND | 2.2 | ND | 1 | ND | 2.4 | ND | 1.5 | ND | 2.5 | ND | 1.5 | ND | 3.2 | ND | ND | ND | LEAD | (ug/L) 20 | 08 | | | | | | | | | | | | | Maak | Inf | JAN
Eff | Inf | FEB
Eff | Tof | MAR
Eff | Tof | APR
Eff | Inf | MAY
Eff | T £ | JUN
Eff | T £ | JUL
Eff | Inf | AUG
Eff | T £ | SEP
Eff | Inf | OCT
Eff | Inf | NOV
Eff | Tof | DEC
Eff | | Week
1 | 6.7 | ND | ND | ND | Inf
ND | ND ND | Inf
ND | ND ND | TIIT | ETT | Inf
ND | ND | Inf
ND | ND | 2.4 | ND ND | Inf
2.4 | ND ND | 3.4 | ND | THT | ETT | Inf
4.8 | ND | | 2 | 2.9 | ND | 5.3 | ND | ND | ND | ND | ND | 4.3 | ND | ND | ND | ND | ND | 2.4 | ND | ND | ND | 4 | ND | 3.3 | ND | 4.8 | ND | | 3 | ND 3 | ND | ND | ND | ND | ND | 3.3 | ND | ND | ND | 2.5 | ND | 3 | <2.0 | 3.6 | ND | | 4 | 2.5 | ND 5.6 | ND | ND | ND | ND | ND | 3.3 | ND | ND | ND | 3 | ND | 4.9 | ND | 3.3 | ND | | Average | 3 | ND | 1.3 | ND | ND | ND | ND | ND | 4.3 | ND | ND | ND | ND | ND | 2.98 | ND | 0.6 | ND | 3.23 | ND | 3.7 | 0 | 4.0 | ND | LEAD | (ug/L) 20 | 08 | | | | | | | | | | | | | Week | Inf | JAN
Eff | Inf | FEB
Eff | Inf | MAR
Eff | Inf | APR
Eff | Inf | MAY
Eff | Inf | JUN
Eff | Inf | JUL
Eff | Inf | AUG
Eff | Inf | SEP
Eff | Inf | OCT
Eff | Inf | NOV
Eff | Inf | DEC
Eff | | week
1 | ND | ND ND | 5.3 | ND | TUL | ETT | 2.9 | ND ND | 3.1 | ND ND | 3.3 | ND ND | 3.3 | ND ND | 3.4 | ND ND | THT | ETT | 7.9 | ND ND | 3.0 | ND | 2.7 | ND ND | | 2 | ND
ND | ND
ND | 3.2 | ND
ND | ND | ND | 3.8 | ND
ND | 2.9 | ND
ND | 3.6 | ND
ND | 3.8 | ND | 4.5 | ND
ND | ND | ND | ND | ND
ND | ND | ND | ND | ND
ND | | 3 | 2.6 | ND | 2.4 | ND | ND | ND | 2.2 | ND | 3.9 | ND | 3.2 | ND | 4.7 | ND | 0 | ND | ND | ND | 2.9 | ND | ND | ND | 2.3 | ND | | 4 | 2.7 | ND | 2.2 | ND | 2.9 | ND | 2.5 | ND | 3.8 | ND | 5.2 | ND | 2.6 | ND | 4.3 | ND | ND | ND | 2 | ND | 2.7 | ND | 2.7 | ND | Average | 1.3 | ND | 3.3 | ND | 1 | ND | 2.9 | ND | 3.4 | ND | 3.8 | ND | 3.6 | ND | 3.1 | ND | ND | ND | 3.20 | ND | 1.4 | ND | 1.9 | ND | | | | | | | | | | | | | NICKI | EL (ug/L) | 2004 | | | | | | | | | | | | |-----------|---------------|----------------------|----------------|-----------------------|-----------|-----------------|----------------|-----------------------|----------------|-----------------------|--------------------------|-----------------------------------|-------------------------|----------------------|----------------------|----------------------|-----------|-----------------------|--------------------|--------------------------|-------------------|--------------------------|--------------------|--------------------------| | | | JAN | | FEB | | MAR | | APR | | MAY | | JUN | | JUL | | AUG | | SEP | | OCT | | NOV | | DEC | | Week | Inf | Eff | 1 | 21 | ND | | | ND | ND | ND | ND | ND | ND | 9 | 9 | 14 | 10 | 11 | 8 | 12 | 8 | 14 | 10 | 15 | 12 | 9 | 6 | | 2 | ND 13 | 8 | 13 | 8 | 21 | 22 | 14 | 9 | 12 | 8 | 11 | 8 | 10 | 7 | | 3
4 | ND
19 | ND
22 | ND
ND | ND
<14 | ND
ND | ND
ND | 14
17 | ND
ND | ND
ND | ND
ND | 15
9 | 7
8 | 12 | 10 | 14
20 | 17
10 | 11
10 | 9
7 | 17
13 | 10
9 | 10
8 | 7
6 | 11
8 | 6
6 | | Avg | 10 | 6 | ND
ND | 0 | ND
ND | ND
ND | 8 | ND
ND | ND
ND | ND
ND | 12 | 8 | 13 | 9 | 17 | 14 | 12 | 8 | 14 | 9 | 11 | 8 | 10 | 6 | | Avg | 10 | 0 | ND | U | ND | ND | 0 | ND | ND | ND | 12 | 0 | 15 | , | 1/ | 14 | 12 | 0 | 14 | , | 11 | 0 | 10 | 0 | | | | | | | | | | | | | NICK | EL (ug/L) | 2005 | | | | | | | | | | | | | | | JAN | | FEB | | MAR | | APR | | MAY | | JUN | | JUL | | AUG | | SEP | | OCT | | NOV | | DEC | | Week | Inf | Eff | 1 | | | 12 | 10 | 6 | 6 | 8 | 18 | | | 12 | 13 | 8 | 8 | 10 | 9 | 8 | 7 | 9 | 7 | | | 11 | 12 | | 2 | 9 | 9 | 5 | 11 | 7 | 8 | 9 | 4 | 10 | 7 | 10 | 21 | 9 | 5 | 8 | 7 | 28 | 11 | 11 | 6 | 16 | 7 | 13 | 7 | | 3 | 8 | 7 | 16 | 4 | 8 | 7 | 8 | 8 | 8 | 7 | 12 | 18 | 8 | 7 | 9 | 7 | 9 | 7 | 8 | 6 | 10 | 11 | 10 | 8 | | 4 | 9 | 8 | 11
11 | 11
9 | 13
9 | 7 | | 7 | 10
9 | 12
9 | 14
12 | 11
16 | 10
9 | <u>8</u>
7 | <u>6</u>
8 | 7
8 | 8
13 | 7
8 | 12
10 | 7 | 9
12 | <u>8</u>
9 | 15
12 | 9 | | Average | 9 | 8 | 11 | 9 | 9 | , | 8 | 9 | 9 | 9 | 12 | 16 | 9 | / | 8 | 8 | 13 | 8 | 10 | / | 12 | 9 | 12 | 9 | | | | | | | | | | | | | NICKI | EL (ug/L) | 2006 | | | | | | | | | | | | | | | JAN | | FEB | | MAR | | APR | | MAY | | JUN | | JUL | | AUG | | SEP | | OCT | | NOV | | DEC | | Week | Inf | Eff | 1 | 19 | 7 | 9 | 8 | 8 | 7 | 8 | 7 | 10 | 8 | 18 | 12 | 15 | 11 | 9 | 7 | 24 | 14 | 19 | 10 | 17 | 12 | 11 | 10 | | 2 | 11 | 8 | 8 | 7 | 9 | 7 | 13 | 5 | 13 | 6 | 14 | 8 | 20 | 10 | 12 | 8 | 19 | 12 | 16 | 10 | 16 | 10 | 8 | 9 | | 3 | 12 | 7 | 9 | 7 | 8 | 6 | 9 | 6 | 10 | 8 | 21 | 13 | 12 | 9 | 25 | 13 | 9 | 7 | 22 | 17 | 9 | 10 | 14 | 11 | | 4 | 10 | 7 | 8 | 7 | | | 14 | 13 | 9 | 7 | 13 | 8 | 19 | 10 | 13 | 9 | | | 28 | 17 | 10 | 10 | 13 | 18 | | Average | 13 | 7 | 9 | 7 | 8 | 7 | 11 | 8 | 11 | 7 | 17 | 10 | 17 | 10 | 15 | 9 | 17 | 11 | 21 | 14 | 13 | 10.5 | 12 | 12 | | | | | | | | | | | | | NTCKI | EL (ug/L) | 2007 | | | | | | | | | | | | | | | JAN | | FEB | | MAR | | APR | | MAY | NICKI | JUN | 2007 | JUL | | AUG | | SEP | | ОСТ | | NOV | | DEC | | Week | Inf | Eff | 1 | 10 | 6 | 23 | 17 | 8 | 7 | 16 | 10 | 11 | 7 | 11 | 7 | 10 | 6 | 10 | 9 | 17 | 14 | 13 | 7 | 14 | 8 | | | | 2 | 17 | 11 | 9 | 10 | 10 | 8 | 12 | 9 | 9 | 6 | 12 | 7 | 11 | 6 | 15 | 8 | 12 | 7 | 12 | 9 | 13 | 8 | 21 | 13 | | 3 | 15 | 11 | 11 | 9 | 15 | 11 | 17 | 10 | 10 | 6 | 9 | 6 | 16 | 7 | 16 | 11 | 11 | 5 | 8 | 6 | 8 | 6 | 17 | 10 | | 4 | 16 | 9 | | | 34 | 19 | 11 | 7 | 10 | 6 | | | 14 | 8 | 11 | 9 | 18 | 9 | 11 | 7 | 11 | 7 | 12 | 7 | | Average | 15 | 9 | 14 | 12 | 17 | 11 | 14 | 9 | 10 | 6 | 11 | 7 | 13 | 7 | 13 | 9 | 15 | 9 | 11 | 7 | 12 | 7 | 17 | 10 | | | | | | | | | | | | | NTCKI | EL (ug/L) | 2008 | | | | | | | | | | | | | | | JAN | | FEB | | MAR | | APR | | MAY | | JUN | 2000 | JUL | | AUG | | SEP | | OCT | | NOV | | DEC | | Week | Inf | Eff | 1 | 11 | 8 | 32 | 23 | 25 | 12 | 10 | 7 | | | 9 | 7 | 18 | 12 | 12 | 7 | 18 | 10 | 13 | 9 | | | 10 | 5 | | 2 | 11 | 8 | 23 | 11 | 12 | 9 | 9 | 5 | 21 | 19 | 9 | 6 | 13 | 9 | 10 | 7 | 11 | 7 | 9 | 7 | 10 | 7 | 11 | 6 | | 3 | 12 | 8 | 7 | 6 | 14 | 7 | 12 | 7 | 12 | 8 | 11 | 7 | 12 | 8 | 17 | 10 | 16 | 11 | 9 | 8 | 7 | 5 | 8 | 5 | | 4 | 20 | 14 | 8 | 6 | 10 | 7 | 8 | 5 | 11 | 8 | 31 | 17 | 8 | 6 | 11 | 7 | 22 | 11 | 31 | 18 | 14 | 9 | 7 | 5 | | Average | 14 | 10 | 18 | 12 | 15 | 9 | 10 | 6 | 15 | 12 | 15 | 9 | 13 | 9 | 13 | 8 | 17 | 10 | 16 | 11 | 10 | 7 | 9 | 5 | | | 14 | 10 | 18 | 12 | 15 | 9 | 10 | 6 | 15 | 12 | | _ | | 9 | 13 | 8 | 17 | 10 | 16 | 11 | 10 | 7 | 9 | 5 | | | 14 | 10
JAN | 18 | 12
FEB | 15 | 9
Mar | 10 | 6
APR | 15 | 12
MAY | | 9
EL (ug/L)
JUN | | JUL | 13 | 8
AUG | 17 | 10
SEP | 16 | OCT | 10 | 7
NOV | 9 | DEC | | Week | 14
Inf | | 18
Inf | | 15
Inf | | 10 | | 15
Inf | | | EL (ug/L) | | | 13 | | 17
Inf | | 16
Inf | | 10
Inf | | 9
Inf | | | Week
1 | | JAN | | FEB | | MAR | | APR | | MAY | NICK | EL (ug/L)
JUN | 2009 | JUL | | AUG | | SEP | | ОСТ | | NOV | | DEC | | | Inf | JAN
Eff | Inf | FEB
Eff | | MAR | Inf | APR
Eff | Inf | MAY
Eff | NICKI
Inf | EL (ug/L)
JUN
Eff | 2009
Inf | JUL
Eff | Inf | AUG
Eff | | SEP | Inf | OCT
Eff | Inf | NOV
Eff | Inf | DEC
Eff | | 1 | Inf
6 | JAN
Eff
5 | Inf
24 | FEB
Eff
15 | Inf | MAR
Eff | Inf
9 | APR
Eff
7 | Inf
8 | MAY
Eff
6 | NICKI
Inf
15 | EL (ug/L)
JUN
Eff
9 | 2009
Inf
12 | JUL
Eff
7 | Inf
9 | AUG
Eff
7 | Inf | SEP
Eff
10
8 | Inf
25.1 | OCT
Eff
6.6 | Inf
8.6 | NOV
Eff
6.7 | Inf
12.5 | DEC
Eff
5.8 | | 1
2 | Inf
6
7 | JAN
Eff
5
5 | Inf
24
9 | FEB
Eff
15
7 | Inf
7 | MAR
Eff
6 | Inf
9
16 | APR
Eff
7
10 | Inf
8
14 | MAY
Eff
6
15 | NICKI
Inf
15
11 | EL (ug/L)
JUN
Eff
9
8 | 2009
Inf
12
10 | JUL
Eff
7
6 | <u>Inf</u>
9
8 | AUG
Eff
7
5 | Inf
15 | SEP
Eff
10 | Inf
25.1
9.0 | 0CT
Eff
6.6
6.6 | Inf
8.6
5.5 | NOV
Eff
6.7
7.1 | Inf
12.5
6.7 | DEC
Eff
5.8
6.6 | | | | | | | | | | | | | MERCU | RY (ug/L |) 2004 | | | | | | | | | | | | |---------|--------------
----------|------------|----------|-------------|----------|--------------|----------|------------|----------|--------------|-----------|-------------|----------|--------------|----------|--------------|----------|--------------|----------|------------|----------|------------|----------| | | | JAN | | FEB | | MAR | | APR | | MAY | | JUN | | JUL | | AUG | | SEP | | OCT | | NOV | | DEC | | Week | Inf | Eff | 1 | ND | ND | | | 0.38 | ND | 0.75 | ND | 0.23 | ND | 0.11 | ND | 0.22 | ND | ND | ND | 0.11 | ND | 0.32 | ND | 0.41 | ND | 0.1 | ND | | 2 | 0.26 | ND | 0.11 | ND | 0.77 | ND | 0.19 | ND | 0.13 | ND | 0.17 | ND | 0.26 | ND | 0.19 | ND | 0.19 | ND | 0.14 | ND | 0.34 | ND | 0.16 | ND | | 3
4 | 0.54
0.24 | ND
ND | ND
0.39 | ND
ND | 0.2
0.18 | ND
ND | 0.11
0.21 | ND
ND | ND
0.11 | ND
ND | 0.23
0.13 | ND
ND | 0.19 | ND | 0.24
0.22 | ND
ND | 0.14
ND | ND
ND | 0.16
0.15 | ND
ND | ND
0.21 | ND
ND | 0.15
ND | ND
ND | | Avg | 0.24 | ND
ND | 0.17 | ND | 0.38 | ND
ND | 0.32 | ND | 0.11 | ND
ND | 0.16 | ND
ND | 0.19 | ND
ND | 0.16 | ND
ND | 0.11 | ND
ND | 0.19 | ND
ND | 0.24 | ND | 0.1 | ND | | Avg | 0.20 | ND | 0.17 | ND | 0.30 | ND | 0.32 | ND | 0.12 | ND | 0.10 | ND | 0.22 | ND | 0.10 | ND | 0.11 | ND | 0.15 | ND | 0.24 | ND | 0.1 | ND | | | | | | | | | | | | | MERCU | RY (ug/L |) 2005 | | | | | | | | | | | | | | | JAN | | FEB | | MAR | | APR | | MAY | | JUN | | JUL | | AUG | | SEP | | OCT | | NOV | | DEC | | Week | Inf | Eff | 1 | | | 0.62 | ND | ND | ND | 0.16 | ND | | | 0.3 | ND | 0.11 | ND | 0.12 | ND | ND | ND | 1.03 | ND | | | 0.15 | ND | | 2 | ND | ND | 0.11 | ND 0.13 | ND | ND | ND | 0.1 | ND | 0.22 | ND | 0.23 | <0.09 | 0.23 | ND | 0.1 | ND | | 3 | ND | ND | 0.27 | ND | 0.11 | ND | 0.19 | ND | 0.1 | ND | 0.25 | ND | ND | ND | 0.16 | ND | ND | ND | 0.39 | ND | 0.11 | ND | 0.3 | ND | | 4 | ND | ND | 0.1 | ND | ND | ND | ND | ND | 0.71 | ND | 0.13 | ND | 0.89 | ND | ND | ND | 0.15 | ND | 0.21 | ND | ND | ND | ND | ND | | Average | ND | ND | 0.28 | ND | 0.03 | ND | 0.09 | ND | 0.27 | ND | 0.2 | ND | 0.25 | ND | 0.1 | ND | 0.09 | ND | 0.47 | 0 | 0.11 | ND | 0.14 | ND | | | | | | | | | | | | | MEDCII | RY (ug/L |) 2006 | | | | | | | | | | | | | | | JAN | | FEB | | MAR | | APR | | MAY | MERCO | JUN |) 2000 | JUL | | AUG | | SEP | | OCT | | NOV | | DEC | | Week | Inf | Eff | 1 | 0.87 | ND | ND | ND | ND | ND | 0.1 | ND | 0.27 | ND | ND | ND | ND | ND | 0.1 | ND | 0.59 | ND | ND | ND | 0.18 | ND | 0.44 | ND | | 2 | 0.14 | ND | ND | ND | 0.37 | ND | 0.11 | ND | ND | ND | ND | ND | 0.55 | ND | 0.13 | <0.09 | ND | ND | 0.66 | ND | 0.22 | ND | ND | ND | | 3 | 0.19 | ND | 0.35 | ND | ND | ND | 0.16 | ND | 0.23 | ND | ND | ND | ND | ND | 0.28 | ND | ND | ND | 0.15 | ND | ND | ND | 1.11 | ND | | 4 | ND | ND | 0.11 | ND | | | 0.12 | ND | 0.36 | 0.14 | 0.1 | ND | 0.12 | ND | 0.18 | ND | | | 0.09 | ND | 0.25 | ND | 0.18 | ND | | Average | 0.3 | ND | 0.12 | ND | 0.12 | ND | 0.12 | ND | 0.22 | 0.04 | 0.03 | ND | 0.16 | ND | 0.17 | 0 | 0.2 | ND | 0.30 | ND | 0.16 | ND | 0.43 | ND | MERCU | RY (ug/L) |) 2007 | | | | | | | | | | | | | | | JAN | | FEB | | MAR | | APR | | MAY | | JUN | | JUL | | AUG | | SEP | | OCT | | NOV | | DEC | | Week | Inf | Eff | 1 | ND | ND | ND | ND | 0.13 | ND | 0.10 | ND | 0.27 | ND | ND | ND | 0.17 | ND | 0.11 | ND | ND | ND | 0.6 | ND | 0.12 | ND | | | | 2 3 | ND | ND | ND | ND | ND | ND | 0.10 | ND | 0.12 | ND | ND | ND | 0.32 | ND | 0.22 | ND | 0.20 | ND | 0.22 | ND | 0.11 | ND | ND | ND | | 4 | ND
ND | ND
ND | 0.12 | ND | 0.1
0.16 | ND
ND | 0.10
0.13 | ND
ND | 0.17
ND | ND
ND | ND | ND | 0.1
0.24 | ND
ND | ND
1.9 | ND
ND | 0.26
0.20 | ND
ND | 0.13
0.2 | ND
ND | ND
ND | ND
ND | ND
ND | ND
ND | | Average | ND
ND | ND
ND | 0.04 | ND | 0.16 | ND
ND | 0.13 | ND | 0.14 | ND
ND | ND | ND | 0.24 | ND
ND | 0.13 | ND
ND | 0.17 | ND
ND | 0.29 | ND
ND | 0.06 | ND
ND | ND
ND | ND
ND | | Average | 140 | ND | 0.04 | ND | 0.1 | ND | 0.11 | ND | 0.14 | ND | 140 | ND | 0.21 | ND | 0.15 | ND | 0.17 | ND | 0.23 | ND | 0.00 | ND | ND | ND | | | | | | | | | | | | | MERCU | RY (ug/L | 2008 | | | | | | | | | | | | | | | JAN | | FEB | | MAR | | APR | | MAY | | JUN | | JUL | | AUG | | SEP | | OCT | | NOV | | DEC | | Week | Inf | Eff | 1 | ND | ND | 0.14 | ND | ND | ND | 0.10 | ND | | | 0.24 | ND | 0.31 | ND | 0.13 | ND | 0.13 | ND | 0.12 | ND | | | ND | ND | | 2 | 0.11 | ND | 0.26 | ND | ND | ND | 0.14 | ND | 0.11 | ND | ND | ND | 0.14 | ND | 0.19 | ND | 0.21 | ND | 0.13 | ND | ND | ND | 0.1 | ND | | 3 | 0.16 | ND | 0.25 | ND | 0.12 | ND | 0.19 | ND | 0.14 | ND | 0.16 | ND | 0.3 | ND | 0.25 | ND | 0.13 | ND | 0.56 | ND | 0.12 | ND | ND | ND | | 4 | 0.21 | ND | ND | ND | 0.11 | <0.09 | 0.79 | ND | ND | ND | 0.3 | ND
ND | 0.25 | 0.13 | 0.12 | ND | 0.28 | ND | 0.17 | ND | ND | ND | ND | ND
ND | | Average | 0.12 | ND | 0.16 | ND | 0.06 | 0 | 0.3 | ND | 0.08 | ND | 0.18 | ND | 0.25 | 0.03 | 0.17 | ND | 0.19 | ND | 0.25 | ND | 0.04 | ND | 0.03 | ND | | | | | | | | | | | | | MERCU | RY (ug/L |) 2009 | | | | | | | | | | | | | | | JAN | | FEB | | MAR | | APR | | MAY | | JUN | , | JUL | | AUG | | SEP | | OCT | | NOV | | DEC | | Week | Inf | Eff | | | | ND | ND | | | 0.15 | ND | 0.21 | ND | 0.19 | ND | 0.13 | ND | 0.38 | ND | | | 0.21 | ND | 0.26 | ND | 0.37 | 0.23 | | 1 | ND | ND | ND | NU | 1 2 | ND
0.1 | ND
ND | ND | ND | ND | ND | 0.32 | ND | 0.15 | ND | 0.28 | ND | ND | ND | 0.19 | ND | | | | | | ND
ND | ND
ND | | ND
ND | 0.15
0 | ND
ND | 0.28
0.2 | ND
ND | ND
0.67 | ND
ND | 0.19
ND | ND
ND | ND
0.14 | ND
ND | ND
ND | ND
ND | ND
ND | | | ND
ND | | 2 | 0.1 | ND | ND | ND | | | 0.32 | | | | | | | | | | | | | | | ND | ND | | | | | | | | | | | | | | SILV | ER (ug/L) | 2004 | | | | | | | | | | | | |---------|------------|----------|------------|----------|------------|------------|------------|------------|------------|-----------|------------|------------------|------------|-----------|------------|----------|------------|-------------|------------|-----------|------------|----------|------------|-----------| | | | JAN | | FEB | | MAR | | APR | | MAY | | JUN | | JUL | | AUG | | SEP | | OCT | | NOV | | DEC | | Week | Inf | Eff | 1 | ND | ND | | | ND | ND | ND | ND | ND | ND | 5.5 | 0.9 | 4.1 | 0.7 | 0.9 | ND | 3.7 | 0.4 | 3.6 | <0.2 | 1.5 | ND | 1.7 | ND | | 2 | ND 3.5 | 1.3 | 3.6 | 0.4 | 4.1 | 0.4 | 3.4 | 0.2 | 3.6 | 0.7 | ND | ND | 0.2 | ND | | 3 4 | ND
ND | ND | ND | ND
ND | ND | ND | ND
ND | ND | ND
ND | ND
ND | 4.7 | 1.5 | | 0.0 | 3.8 | 0.6 | 1.1 | 0.2 | 2.9 | 0.4 | ND | ND
ND | ND | ND
ND | | | ND
ND | ND
ND | ND
ND | ND
ND | ND | ND | ND
ND | ND
ND | ND
ND | ND
ND | 3.9
4.4 | 1.2 | 3 | 0.2 | 4.8
3.4 | 0.4 | 0.5
2.2 | 0.7 | 1.9
3 | 0.3 | 1.9 | ND
ND | 0.9 | ND
ND | | Avg | ND 4.4 | 1.2 | 3 | 0.4 | 3.4 | 0.4 | 2.2 | 0.4 | 3 | 0.4 | 1.9 | ND | 0.7 | ND | | | | | | | | | | | | | SILV | ER (ug/L) | 2005 | | | | | | | | | | | | | | | JAN | | FEB | | MAR | | APR | | MAY | | JUN | | JUL | | AUG | | SEP | | OCT | | NOV | | DEC | | Week | Inf | Eff | 1 | | | 0.2 | ND | ND | ND | 2.1 | ND | | | 2.2 | 0.7 | 0.6 | ND | 1.3 | ND | 0.8 | ND | 2.7 | ND | | | 0.6 | ND | | 2 | ND | ND | 0.8 | ND | ND | ND | 2.9 | 0.3 | 2.3 | 0.3 | 2.1 | ND | 1.9 | ND | 2.1 | ND | 2.9 | <0.2 | 0.6 | ND
ND | 1.3 | ND | ND | ND | | 3 4 | ND
ND | ND
ND | 2.2
0.9 | ND
ND | 0.4
0.8 | ND
ND | 3.2
0.9 | <0.2
ND | 2.2
2.4 | ND
ND | 2.7
1 | ND
ND | 0.9
1 | ND
ND | 0.6
ND | ND
ND | 2.3
2.4 | ND
ND | ND
1.2 | ND
ND | 1.5
10 | ND
ND | ND
ND | ND
ND | | Average | ND | ND | 1 | ND | 0.3 | ND | 2.3 | 0.1 | 2.3 | 0.1 | 2 | 0.2 | 1.1 | ND
ND | 1 | ND
ND | 2.4 | 0 | 1.1 | ND | 1.3 | ND | 0.2 | ND | | Average | ND | ND | - | ND | 0.5 | ND | 2.3 | 0.1 | 2.3 | 0.1 | - | 0.2 | | ND | - | ND | 2.1 | Ü | | ND | 1.5 | ND | 0.2 | ND | | | | | | | | | | | | | SILV | ER (ug/L) | 2006 | | | | | | | | | | | | | | | JAN | | FEB | | MAR | | APR | | MAY | | JUN | | JUL | | AUG | | SEP | | OCT | | NOV | | DEC | | Week | Inf | Eff Eff
ND | Inf | Eff
ND | Inf | Eff | Inf | Eff | | 1 | 1.6 | ND | ND | ND | 0.2 | <0.2 | ND | ND | ND | ND | ND | ND | 2.6 | 0.4 | 1.1 | ND | 1.1 | | 2.6 | | 2.1 | 0.3 | 3.6 | ND | | 2 3 | 1.2
0.7 | ND
ND | ND
ND | ND
ND | 0.3
1.3 | 0.2
ND | ND
1.5 | ND
ND | 3
2.3 | ND
ND | 2.9
1.7 | ND
0.4 | 4.1
1 | ND
0.2 | 1.3
1.8 | ND
ND | 0.4
0.8 | ND
0.4 | 3.0
1.5 | ND
ND | 1.4
1.2 | ND
ND | 3.2
2.8 | ND
0.6 | | 4 | 0.5 | ND | 0.2 | ND | 1.5 | ND | 5.7 | ND | 1.8 | 0.9 | 0.4 | 0.9 | 0.2 | ND | 1.9 | ND | 0.0 | 0.4 | 3.3 | 0.2 | 3.1 | 0.2 | 4 | 0.5 | | Average | 1.0 | ND | 0.1 | ND | 0.6 | 0.1 | 1.8 | ND | 1.8 | 0.2 | 1.3 | 0.3 | 2.0 | 0.2 | 1.5 | ND | 0.8 | 0.1 | 2.6 | 0.1 | 2.0 | 0.1 | 3.4 | 0.3 | JAN | | FEB | | MAR | | APR | | MAY | SILVER (u | g/L) 2007
JUN | • | JUL | | AUG | | SEP | | ОСТ | | NOV | | DEC | | Week | Inf | Eff | 1 | 2.1 | ND | 0.5 | ND | 1.2 | ND | 2.4 | ND | 2.6 | ND | 3.6 | ND | 1.6 | ND | 1.4 | ND | ND | ND | 1.7 | ND | 1.6 | ND | | | | 2 | 1.2 | ND | ND | ND | 1.1 | ND | 1.7 | ND | 2.4 | ND | 2.0 | ND | 2.1 | ND | 2.4 | ND | 1.9 | ND | 0.7 | ND | 1.9 | ND | ND | ND | | 3 | 1.8 | 0.5 | ND | ND | 2.1 | ND | 1 | ND | 2.8 | ND | 1.2 | ND | 2.4 | ND | 1.2 | ND | 1.9 | ND | 4 | 1.2 | ND | | | 3 | ND | ND | ND | 3 | 0.6 | | | 1.9 | ND | 1.1 | ND | 2.1 | ND | 1.8 | ND | 0.9 | ND | 0.6 | ND | | Average | 1.6 | 0.1 | 0.2 | ND | 1.9 | ND | 1.3 | ND | 2.7 | 0.6 | 2.3 | ND | 2.0 | ND | 1.5 | ND | 1.5 | ND | 1.1 | ND | 1.1 | ND |
0.2 | ND | | | | | | | | | | | | | SILVER (u | g/L) 2008 | ; | | | | | | | | | | | | | | | JAN | | FEB | | MAR | | APR | | MAY | , | JUN | | JUL | | AUG | | SEP | | OCT | | NOV | | DEC | | Week | Inf | Eff | 1 | ND | ND | ND | ND | 1.9 | 0.7 | ND | ND | | | 0.8 | ND | 2.2 | ND | 1.3 | ND | 1.1 | ND | 1.3 | <0.4 | | | 2.8 | 0.4 | | 2 | 1.3 | ND | 2.6 | ND | 1.3 | 0.8 | 1.6 | ND | 1.3 | ND | 1.9 | ND | 2.0 | 0.6 | 1.2 | ND | 1.8 | ND | 1.6 | <0.4 | 0.7 | ND | 1.1 | ND | | 3 | 1.0 | ND | 1.4 | ND | 1.7 | 1.1 | 2.4 | ND | 1.3 | ND | 2.7 | ND | 1.4 | ND | 1.3 | ND | 0.6 | 0.0 | 0.9 | ND | 0.6 | ND | 1.0 | ND | | 4 | 1.2 | ND | 0.9 | ND | 1.6 | 0.7 | 1.4 | ND | 0.5 | ND | 1.9 | 0.6 | 1.0 | 0.5 | 1.7 | ND | 1.9 | 0.6 | 1.4 | ND | 1.8 | ND | 0.8 | ND | | Average | 0.9 | ND | 1.2 | ND | 1.6 | 0.8 | 1.4 | ND | 1.0 | ND | 1.8 | 0.2 | 1.7 | 0.3 | 1.4 | ND | 1.4 | 0.1 | 1.3 | 0.0 | 1.0 | ND | 1.4 | 0.1 | | | | | | | | | | | | | SILVER (u | g/L) 2009 | | | | | | | | | | | | | | | | JAN | | FEB | _ | MAR | _ | APR | _ | MAY | | JUN | | JUL | | AUG | _ | SEP | _ | OCT | | NOV | _ | DEC | | Week | Inf | Eff | 1 | ND | ND | 2.5 | ND | | | 0.9 | ND | 1.0 | ND | 1.1 | ND | 1.6 | ND | 1.6 | ND | | | 3.3 | ND | 1.0 | ND | 1.1 | ND | | 2 | ND | ND | 1.7 | ND | 0.6 | ND
(0.4 | 2.6 | <0.4 | 1.8 | ND
1 4 | 1.1 | ND | 1.4 | ND | 1.0 | ND | 1.0 | <0.4 | ND | ND | 1.2 | ND | ND
1.0 | ND | | 3 | 0.8
1.6 | ND
ND | 1.7
0.8 | ND
ND | 1.2
1.6 | <0.4
ND | 3.5
0.5 | ND
ND | 1.9
1.7 | 1.4
ND | 1.2
1.2 | ND
ND | 2.2
1.1 | ND
ND | ND
0.8 | ND
ND | 1.4
1.5 | <0.4
0.9 | ND
1.0 | ND
ND | 0.6
0.6 | ND
ND | 1.0
1.5 | ND
ND | | Average | 0.6 | ND
ND | 1.7 | ND | 1.1 | 0.0 | 1.9 | ND
ND | 1.6 | 0.4 | 1.2 | ND
ND | 1.6 | ND
ND | 0.9 | ND
ND | 1.3 | 0.3 | 1.1 | ND
ND | 0.9 | ND
ND | 0.9 | ND | | Average | 0.0 | ND | 1./ | ND | 1.1 | 0.0 | 1.5 | ND | 1.0 | 0.4 | 1.2 | ND | 1.0 | ND | 0.5 | ND | 1.3 | 0.5 | 1.1 | ND | 0.5 | ND | 0.5 | ND | | | | | | | | | | | | | ZINC (ug | | | | | | | | | | | | | | |-------------------|-------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|-----------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------| | Usali | Inf | JAN
Eff | T C | FEB
Eff | Inf | MAR
Eff | Inf | APR
Eff | T C | MAY
Eff | Inf | JUN
Eff | Inf | JUL
Eff | Inf | AUG
Eff | Inf | SEP
Eff | T - C | OCT
Eff | T C | NOV
Eff | T C | DEC
Eff | | Week
1 | 136 | 36 | Inf | ETT | 11T
129 | 29 | 144 | 14 | Inf
141 | 27 | 10T
125 | 20 | 10T
125 | 20 | 112 | 14 | 133 | 17 | Inf
143 | 10 | Inf
140 | 17 | Inf
141 | ND | | 2 | 165 | 47 | 148 | 28 | 145 | 42 | 154 | 18 | 141 | 19 | 134 | 19 | 134 | 19 | 175 | 23 | 134 | 15 | 124 | 16 | 116 | 19 | 134 | ND | | 3 | 152 | 49 | 145 | 21 | 139 | 24 | 148 | 25 | 140 | 16 | 130 | | | | 141 | 21 | 117 | 17 | 150 | 26 | 110 | 21 | 134 | ND | | 4 | 183 | 53 | 135 | 33 | 138 | 49 | 171 | 23 | 128 | 22 | | 16 | 130 | 16 | 191 | 17 | 73 | 18 | 98 | 21 | 120 | 17 | 105 | ND | | Avg | 159 | 46 | 143 | 27 | 138 | 36 | 154 | 20 | 138 | 21 | 130 | 18 | 130 | 18 | 155 | 19 | 114 | 17 | 129 | 18 | 122 | 19 | 129 | ND | | | | | | | | | | | | | ZINC (ug | /1) 2005 | | | | | | | | | | | | | | | | JAN | | FEB | | MAR | | APR | | MAY | ZINC (UB | JUN | | JUL | | AUG | | SEP | | ОСТ | | NOV | | DEC | | Week | Inf | Eff | 1 | | | 124 | 29 | 97 | 28 | 144 | 46 | | | 121 | 48 | 116 | 16 | 149 | 25 | 138 | 24 | 188 | 14 | | | 148 | 31 | | 2 | 96 | 25 | 136 | 22 | 103 | 25 | 142 | 26 | 139 | 21 | 128 | 66 | 131 | 18 | 132 | 19 | 171 | 22 | 138 | 16 | 254 | 21 | 149 | 21 | | 3
4 | 97
116 | 20
25 | 196
90 | 18
27 | 130
117 | 22
24 | 144
134 | 28
24 | 118
142 | 19
26 | 127
122 | 58
28 | 68
128 | 24
25 | 146
71 | 18
16 | 131
145 | 17
20 | 74
150 | 22
23 | 129
120 | 29
19 | 121
118 | 19
19 | | Average | 103 | 23 | 137 | 24 | 112 | 25 | 141 | 31 | 133 | 22 | 125 | 50 | 111 | 21 | 125 | 20 | 146 | 21 | 138 | 19 | 168 | 23 | 134 | 23 | | 7. T. C. U.S. | 203 | | 23, | | | 23 | | 32 | 255 | | 123 | 30 | | | 123 | 20 | 1.0 | | 130 | | 100 | 23 | 25. | 23 | | | | | | | | | | | | | ZINC (ug | | | | | | | | | | | | | | | Week | Inf | JAN
Eff | Inf | FEB
Eff | Inf | MAR
Eff | Inf | APR
Eff | Inf | MAY
Eff | Inf | JUN | Inf | JUL
Eff | Inf | AUG
Eff | Inf | SEP
Eff | Inf | OCT
Eff | Inf | NOV
Eff | Inf | DEC
Eff | | 1 | 182 | 23 | 17 | 20 | 149 | 26 | 159 | 28 | 256 | 21 | 143 | Eff
26 | 180 | 31 | 151 | 26 | 170 | 23 | 163 | 15 | 181 | 16 | 160 | 18 | | 2 | 145 | 23 | 117 | 24 | 201 | 56 | 371 | 31 | 173 | 22 | 169 | 26 | 352 | 26 | 164 | 29 | 158 | 20 | 178 | 36 | 136 | 10 | 125 | 18 | | 3 | 129 | 24 | 122 | 24 | 124 | 34 | 182 | 31 | 155 | 27 | 159 | 25 | 149 | 27 | 158 | 27 | 158 | 18 | 82 | 13 | 124 | 9 | 126 | 16 | | 4 | 128 | 21 | 129 | 26 | | | 327 | 64 | 149 | 26 | 173 | 36 | 93 | 26 | 166 | 25 | | | 168 | 20 | 135 | 9 | 121 | 17 | | Average | 146 | 23 | 121 | 24 | 158 | 39 | 260 | 39 | 183 | 24 | 161 | 28 | 194 | 28 | 160 | 27 | 162 | 20 | 148 | 21 | 144 | 11 | 133 | 17 | | | | | | | | | | | | | 7TM | C (ug/L) | 2007 | | | | | | | | | | | | | | | JAN | | FEB | | MAR | | APR | | MAY | ZIW | JUN | 2007 | JUL | | AUG | | SEP | | OCT | | NOV | | DEC | | Week | Inf | Eff | 1 | 163 | 18 | 87 | 21 | 149 | 22 | 176 | 18 | 140 | 13 | 183 | 17 | 166 | 17 | 149 | 22 | 152 | 27 | 180 | 24 | 144 | 16 | | | | 2 | 153 | 17 | 82 | 21 | 137 | 18 | 167 | 25 | 153 | 13 | 178 | 16 | 195 | 40 | 172 | 20 | 150 | 25 | 166 | 26 | 159 | 16 | 129 | 19 | | 3 | 149 | 19 | 91 | 22 | 146 | 17 | 164 | 19 | 170 | 15 | 154 | 14 | 191 | 21 | 178 | 24 | 159 | 19 | 130 | 17 | 113 | 20 | 127 | 17 | | Average | 159
156 | 29
21 | 87 | 21 | 159
148 | 17
19 | 164
168 | 22
21 | 154
154 | 12
13 | 172 | 16 | 146
175 | 22
25 | 168
167 | 23
22 | 187
162 | 17
22 | 134
153 | 18
21 | 170
147 | 25
19 | 126
127 | 16
17 | | Average | 130 | 21 | 67 | 21 | 140 | 10 | 100 | 21 | 134 | 13 | 1/2 | 10 | 1/3 | 23 | 107 | 22 | 102 | 22 | 133 | 21 | 147 | 13 | 127 | 1/ | | | | | | | | | | | | | ZINO | C (ug/L) | 2008 | | | | | | | | | | | | | | | JAN | | FEB | | MAR | | APR | | MAY | | JUN | | JUL | | AUG | | SEP | | OCT | | NOV | | DEC | | Week
1 | Inf
108 | Eff
19 | Inf
111 | Eff
25 | Inf
147 | Eff
25 | Inf
122 | Eff
25 | Inf | Eff | Inf
123 | Eff
24 | Inf
155 | Eff
21 | Inf
160 | Eff
25 | Inf
167 | Eff
23 | Inf
185 | Eff
19 | Inf | Eff | Inf
166 | Eff
29 | | 2 | 138 | 26 | 267 | 28 | 133 | 23 | 141 | 24 | 162 | 31 | 152 | 29 | 141 | 23 | 157 | 22 | 140 | 24 | 146 | 21 | 136 | 26 | 137 | 28 | | 3 | 133 | 18 | 123 | 20 | 143 | 22 | 151 | 27 | 159 | 34 | 159 | 31 | 151 | 20 | 167 | 23 | 125 | 27 | 147 | 21 | 134 | 22 | 122 | 32 | | 4 | 122 | 18 | 87 | 21 | 135 | 26 | 135 | 23 | 131 | 32 | 200 | 31 | 148 | 53 | 162 | 22 | 150 | 22 | 140 | 27 | 159 | 25 | 115 | 26 | | Average | 125 | 20 | 147 | 24 | 140 | 24 | 137 | 25 | 151 | 32 | 159 | 29 | 149 | 29 | 162 | 23 | 146 | 24 | 155 | 22 | 143 | 24 | 135 | 29 | | | | | | | | | | | | | 7781/ | C (ua/L) | 2000 | | | | | | | | | | | | | | | JAN | | FEB | | MAR | | APR | | MAY | ZING | C (ug/L)
JUN | 2003 | JUL | | AUG | | SEP | | ОСТ | | NOV | | DEC | | Week | Inf | Eff | 1 | 116 | 32 | 177 | 39 | | | 151 | 25 | 160 | 24 | 162 | 25 | 158 | 21 | 177 | 31 | | | 403 | 19 | 152 | 17 | 156 | 20 | | 2 | 133 | 29 | 134 | 31 | 126 | ND | 161 | 23 | 155 | 21 | 143 | 18 | 150 | 21 | 171 | 25 | 142 | 22 | 146 | 22 | 73 | 23 | 61 | 26 | | | | 47 | 153 | າດ | 137 | ND | 151 | 21 | 176 | 21 | 148 | 24 | 173 | 21 | 67 | 19 | 139 | 19 | 153 | 28 | 95 | 20 | 137 | 20 | | 3 | 144 | 47 | 152 | 28 | 3
4
Average | 144
164
139 | 26
34 | 141
151 | 34
33 | 148 | ND
ND | 141
151 | 20 | 171
166 | 20 | 152
151 | 12
20 | 151
158 | 21 | 142
139 | 26
25 | 146
142 | 19 | 143 | 22 | 159
120 | 17
19 | 150
126 | 23
22 | | | | | | | | | | | | | AMMO | IIA (mg/L) | 2004 | | | | | | | | | | | | |---|--|--|--|---|---|---|--|---|--|---|---|---|---
--|---|--|---|---|--|---|---|--|---|--| | | | JAN | | FEB | | MAR | | APR | | MAY | | JUN | | JUL | | AUG | | SEP | | OCT | | NOV | | DEC | | Week | Inf | Eff | 1 2 | 29.1
29.7 | 28.8
29.4 | 29.1 | 29.4 | 25.2
27.7 | 25.5
28 | 25.8
27.2 | 26.6
27.4 | 28.2
29.7 | 26.5
30 | 28.8
27.4 | 29.1
28.3 | 28.6
26.9 | 28
27.4 | 29.4
29.1 | 29.1
29.3 | 28.3
27.7 | 27.2
26 | 30.2
27.4 | 30.2
28.3 | 23
28.3 | 24.1
27.7 | 26.9
27.7 | 26.6
27.4 | | 3 | 26.9 | 26.6 | 30.5 | 29.4 | 27.7 | 28.3 | 24.8 | 24.9 | 31.4 | 30.8 | 30 | 28.8 | 20.9 | 27.4 | 30 | 29.5 | 26.9 | 28 | 27.4 | 28.3 | 27.2 | 26.6 | 27.7 | 28.3 | | 4 | 30.2 | 29.4 | 20.4 | 20.4 | 29.1 | 28.3 | 27.4 | 28.3 | 28.6 | 28.8 | 27.4 | 28.3 | 28.3 | 28 | 28.3 | 28 | 28.3 | 28 | 19 | 19.3 | 27.4 | 27.2 | 25.2 | 24.6 | | Avg | 29 | 28.6 | 26.7 | 25.7 | 27.4 | 27.5 | 26.3 | 26.8 | 29.5 | 29 | 28.4 | 28.6 | 27.9 | 27.8 | 29.2 | 28.8 | 27.8 | 27.3 | 24.7 | 25.2 | 26.5 | 26.4 | 27 | 26.7 | | - | 7.651 | | FEB | | MAD | | 400 | | MAN | AMMO | IIA (mg/L) | 2005 | 7111 | | ALIC | | SEP | | OCT | | NOV | | DEC | | Week | Inf | JAN
Eff | Inf | Eff | Inf | MAR
Eff | Inf | APR
Eff | Inf | MAY
Eff | Inf | JUN
Eff | Inf | JUL
Eff | Inf | AUG
Eff | Inf | SEP
Eff | Inf | OCT
Eff | Inf | NOV
Eff | Inf | Eff | | 1 | 2111 | | 28 | 27.7 | 17.4 | 17.4 | 27.7 | 28 | 1111 | | 28 | 28.3 | 28.3 | 27.7 | 29.1 | 28.8 | 28.6 | 28.3 | 29.1 | 28.6 | 1111 | | 31.4 | 30.5 | | 2 | 21.6 | 21.3 | 28.5 | 27.7 | 24.6 | 24.4 | 27.9 | 27.4 | 28.6 | 28.3 | 30.3 | 29.4 | 28.8 | 28.3 | 29.4 | 28.6 | 29.4 | 29.1 | 29.7 | 30 | 28.6 | 28.3 | 29.7 | 29.4 | | 3 | 25.2 | 24.6 | 26.6 | 27.4 | 28 | 26.6 | 29.1 | 28.6 | 28.6 | 27.4 | 30.8 | 30.2 | 28.6 | 28.3 | 27.4 | 27.4 | 27.4 | 28 | 27.7 | 27.4 | 30.2 | 30 | 29.7 | 29.4 | | 4 | 27.1 | 26.6 | 21.6 | 21.3 | 26.9 | 26.6 | 27.1 | 26.9 | 28.3 | 28 | 29.7 | 29.4 | 29.4 | 29.1 | 27.4 | 27.7 | 29.3 | 28.8 | NA | NA | 27.7 | 27.7 | 29.7 | 26.3 | | Average | 24.6 | 24.2 | 26.2 | 26 | 24.2 | 23.8 | 28 | 27.7 | 28.5 | 27.9 | 29.7 | 29.3 | 28.8 | 28.4 | 28.3 | 28.1 | 28.7 | 28.6 | 28.8 | 28.7 | 28.8 | 28.7 | 30.1 | 28.9 | | | | | | | | | | | | | AMMON | ITA (ma/L) | 2006 | | | | | | | | | | | | | | | JAN | | FEB | | MAR | | APR | | MAY | AMMON | IIA (mg/L)
JUN | 2006 | JUL | | AUG | | SEP | | ОСТ | | NOV | | DEC | | Week | Inf | Eff | 1 | 26.9 | 29.4 | 33.2 | 31.9 | 31.3 | 29.4 | 30.1 | 30.2 | 34.3 | 29.1 | 28.6 | 28.3 | 31.3 | 30.8 | 31.6 | 30.2 | 31.9 | 31.4 | 31.9 | 32.8 | 31.9 | 30.2 | 34.9 | 33.9 | | 2 | 29.7 | 28.3 | 39.2 | 36.7 | 33 | 32.5 | 29.1 | 28.8 | 31.4 | 30.8 | 30.5 | 29.4 | 31.0 | 30.5 | 32.5 | 30.5 | 30.2 | 30.2 | 31.4 | 30.8 | 31.6 | 31.4 | 33.9 | 33.3 | | 3 | 30.5 | 29.7 | 31.1 | 30.8 | 32.5 | 31.5 | 31.1 | 30.8 | 31.4 | 31.1 | 31.1 | 30.5 | 30.5 | 30.2 | 29.4 | 30 | 30 | 29.7 | 31.1 | 30.8 | 30.8 | 30.8 | 32.7 | 32.2 | | 4 | 31 | 30.5 | 30 | 29.7 | | | 32.3 | 31.9 | 30.8 | 30.2 | 30.0 | 29.1 | 29.6 | 28.8 | NA | NA | | | NA | NA | 31.6 | 31.1 | 31.4 | 31.1 | | Average | 29.5 | 29.5 | 33.4 | 32.3 | 32.3 | 31.1 | 30.7 | 30.4 | 32.0 | 30.3 | 30.1 | 29.3 | 30.6 | 30.1 | 31.2 | 30.2 | 30.7 | 30.4 | 31.5 | 31.5 | 31.5 | 30.9 | 33.2 | 32.6 | | | | | | | | | | | | | AMMON | ITA ((I.) | 2007 | AMMON | IIA (mg/L) | 2007 | | | | | | | | | | | | | | | JAN | | FEB | | MAR | | APR | | MAY | | JUN | | JUL | | AUG | | SEP | | OCT | | NOV | | DEC | | Week | Inf | Eff | Inf | JUN
Eff | Inf | Eff | Inf | DEC
Eff | | 1 | 31.9 | Eff
31.6 | 33.3 | Eff
33.0 | 29.7 | Eff
30.0 | 33.6 | Eff
33.3 | 32.7 | Eff
31.4 | Inf
32.9 | JUN
Eff
32.5 | Inf
30.8 | Eff
30.5 | 31.4 | Eff
30.5 | 29.4 | Eff
29.7 | 32.5 | Eff
31.6 | 32.8 | Eff
31.9 | | Eff | | 1 2 | 31.9
31.1 | 31.6
31.1 | 33.3
31.6 | Eff
33.0
31.4 | 29.7
30.4 | Eff
30.0
30.5 | 33.6
NA | Eff
33.3
NA | 32.7
32.2 | Eff
31.4
31.6 | Inf
32.9
33.6 | JUN
Eff
32.5
33.3 | Inf
30.8
32.8 | Eff
30.5
31.9 | 31.4
33.3 | 86.5
30.5
31.6 | 29.4
31.9 | 29.7
31.4 | 32.5
31.4 | Eff
31.6
30.8 | 32.8
34.4 | Eff
31.9
32.8 | 8.3 | Eff
27.4 | | 1
2
3 | 31.9
31.1
31.4 | Eff
31.6
31.1
32.2 | 33.3 | Eff
33.0 | 29.7
30.4
32.4 | 30.0
30.5
31.1 | 33.6
NA
33.5 | 33.3
NA
32.8 | 32.7
32.2
30.8 | 31.4
31.6
30.8 | Inf
32.9 | JUN
Eff
32.5 | Inf
30.8
32.8
34.4 | 30.5
31.9
33.3 | 31.4
33.3
31.1 | 30.5
31.6
29.7 | 29.4
31.9
33.6 | 29.7
31.4
32.8 | 32.5
31.4
34.4 | Eff
31.6
30.8
33.3 | 32.8
34.4
29.4 | Eff
31.9
32.8
29.4 | 8.3
30.7 | 27.4
29.4 | | 1 2 | 31.9
31.1 | 31.6
31.1 | 33.3
31.6 | Eff
33.0
31.4 | 29.7
30.4 | Eff
30.0
30.5 | 33.6
NA | Eff
33.3
NA | 32.7
32.2 | Eff
31.4
31.6 | Inf
32.9
33.6 | JUN
Eff
32.5
33.3 | Inf
30.8
32.8 | Eff
30.5
31.9 | 31.4
33.3 | 86.5
30.5
31.6 | 29.4
31.9 | 29.7
31.4 | 32.5
31.4 | Eff
31.6
30.8 | 32.8
34.4 | Eff
31.9
32.8 | 8.3 | Eff
27.4 | | 1
2
3 | 31.9
31.1
31.4 | Eff
31.6
31.1
32.2 | 33.3
31.6 | Eff
33.0
31.4 | 29.7
30.4
32.4 | 30.0
30.5
31.1 | 33.6
NA
33.5
33.3 | 33.3
NA
32.8
32.8 | 32.7
32.2
30.8 | 31.4
31.6
30.8 | Inf
32.9
33.6 | JUN
Eff
32.5
33.3 | Inf
30.8
32.8
34.4 | 30.5
31.9
33.3 | 31.4
33.3
31.1 | 30.5
31.6
29.7 | 29.4
31.9
33.6 | 29.7
31.4
32.8 | 32.5
31.4
34.4 | Eff
31.6
30.8
33.3 | 32.8
34.4
29.4 | Eff
31.9
32.8
29.4 | 8.3
30.7 | 27.4
29.4 | | 1
2
3
4 | 31.9
31.1
31.4
29.4 | Eff
31.6
31.1
32.2
29.7 | 33.3
31.6
29.4 | Eff
33.0
31.4
28.6 | 29.7
30.4
32.4
32.5 | Eff
30.0
30.5
31.1
32.5 | 33.6
NA
33.5
33.3
31.9 | Eff
33.3
NA
32.8
32.8
31.9 | 32.7
32.2
30.8
NA | Eff
31.4
31.6
30.8
NA | Inf
32.9
33.6
32.2 | JUN
Eff
32.5
33.3
31.6 | Inf
30.8
32.8
34.4
32.9 | Eff
30.5
31.9
33.3
33.0 | 31.4
33.3
31.1
30.9 | Eff
30.5
31.6
29.7
30.0 | 29.4
31.9
33.6
32.4 | Eff
29.7
31.4
32.8
31.6 | 32.5
31.4
34.4
32.5 | Eff
31.6
30.8
33.3
31.1 | 32.8
34.4
29.4
28.3 | Eff
31.9
32.8
29.4
28.3 | 8.3
30.7
28.8 | 27.4
29.4
28.6 | | 1
2
3
4 | 31.9
31.1
31.4
29.4 | Eff
31.6
31.1
32.2
29.7 | 33.3
31.6
29.4 | Eff
33.0
31.4
28.6 | 29.7
30.4
32.4
32.5 | Eff
30.0
30.5
31.1
32.5 | 33.6
NA
33.5
33.3
31.9 | Eff
33.3
NA
32.8
32.8
31.9 | 32.7
32.2
30.8
NA | Eff
31.4
31.6
30.8
NA | Inf
32.9
33.6
32.2 | JUN
Eff
32.5
33.3
31.6
32.5 | Inf
30.8
32.8
34.4
32.9 | Eff
30.5
31.9
33.3
33.0 | 31.4
33.3
31.1
30.9 | Eff
30.5
31.6
29.7
30.0 | 29.4
31.9
33.6
32.4 | Eff
29.7
31.4
32.8
31.6 | 32.5
31.4
34.4
32.5 | Eff
31.6
30.8
33.3
31.1 | 32.8
34.4
29.4
28.3 | Eff
31.9
32.8
29.4
28.3 | 8.3
30.7
28.8 | 27.4
29.4
28.6
28.5 | | 1
2
3
4
Average | 31.9
31.1
31.4
29.4 | Eff
31.6
31.1
32.2
29.7
31.2 | 33.3
31.6
29.4
31.4 | 81.0
31.4
28.6
31.0 | 29.7
30.4
32.4
32.5 | Eff
30.0
30.5
31.1
32.5
31.0 | 33.6
NA
33.5
33.3
31.9 | Eff
33.3
NA
32.8
32.8
31.9
32.7 | 32.7
32.2
30.8
NA | Eff
31.4
31.6
30.8
NA
31.3 | Inf
32.9
33.6
32.2
32.9 | JUN
Eff
32.5
33.3
31.6
32.5
JUN | Inf
30.8
32.8
34.4
32.9
32.7 | Eff
30.5
31.9
33.3
33.0
32.2 | 31.4
33.3
31.1
30.9 | Eff
30.5
31.6
29.7
30.0
30.5 | 29.4
31.9
33.6
32.4
31.8 | Eff
29.7
31.4
32.8
31.6
31.4 | 32.5
31.4
34.4
32.5 | Eff
31.6
30.8
33.3
31.1
31.7 | 32.8
34.4
29.4
28.3 | Eff
31.9
32.8
29.4
28.3
30.6 | 8.3
30.7
28.8
22.6 | 27.4
29.4
28.6
28.5 | | 1
2
3
4
Average | 31.9
31.1
31.4
29.4
31.0 | Eff
31.6
31.1
32.2
29.7
31.2 | 33.3
31.6
29.4
31.4 | 28.6
31.0
31.4
28.6 | 29.7
30.4
32.4
32.5
31.3 | Eff
30.0
30.5
31.1
32.5
31.0 | 33.6
NA
33.5
33.3
31.9
33.1 |
Eff
33.3
NA
32.8
32.8
31.9
32.7 | 32.7
32.2
30.8
NA | Eff
31.4
31.6
30.8
NA | Inf
32.9
33.6
32.2
32.9
AMMON | JUN
Eff
32.5
33.3
31.6
32.5
JUN
Eff | Inf 30.8 32.8 34.4 32.9 32.7 2008 Inf | Eff
30.5
31.9
33.3
33.0
32.2 | 31.4
33.3
31.1
30.9
31.7 | Eff
30.5
31.6
29.7
30.0
30.5 | 29.4
31.9
33.6
32.4
31.8 | 29.7
31.4
32.8
31.6
31.4 | 32.5
31.4
34.4
32.5
32.7 | Eff
31.6
30.8
33.3
31.1
31.7 | 32.8
34.4
29.4
28.3 | Eff
31.9
32.8
29.4
28.3 | 8.3
30.7
28.8
22.6 | 27.4
29.4
28.6
28.5
DEC
Eff | | 1
2
3
4
Average | 31.9
31.1
31.4
29.4 | Eff
31.6
31.1
32.2
29.7
31.2 | 33.3
31.6
29.4
31.4 | 81.0
31.4
28.6
31.0 | 29.7
30.4
32.4
32.5 | Eff
30.0
30.5
31.1
32.5
31.0 | 33.6
NA
33.5
33.3
31.9 | Eff
33.3
NA
32.8
32.8
31.9
32.7 | 32.7
32.2
30.8
NA | Eff
31.4
31.6
30.8
NA
31.3 | Inf
32.9
33.6
32.2
32.9 | JUN
Eff
32.5
33.3
31.6
32.5
JUN | Inf
30.8
32.8
34.4
32.9
32.7 | Eff
30.5
31.9
33.3
33.0
32.2 | 31.4
33.3
31.1
30.9 | Eff
30.5
31.6
29.7
30.0
30.5 | 29.4
31.9
33.6
32.4
31.8 | Eff
29.7
31.4
32.8
31.6
31.4 | 32.5
31.4
34.4
32.5 | Eff
31.6
30.8
33.3
31.1
31.7 | 32.8
34.4
29.4
28.3 | Eff
31.9
32.8
29.4
28.3
30.6 | 8.3
30.7
28.8
22.6 | 27.4
29.4
28.6
28.5 | | 1 2 3 4 Average | 31.9
31.1
31.4
29.4
31.0 | Eff
31.6
31.1
32.2
29.7
31.2
JAN
Eff
30.8 | 33.3
31.6
29.4
31.4
Inf
40.5 | Eff
33.0
31.4
28.6
31.0
FEB
Eff
29.7 | 29.7
30.4
32.4
32.5
31.3 | Eff
30.0
30.5
31.1
32.5
31.0
MAR
Eff
30.8 | 33.6
NA
33.5
33.3
31.9
33.1 | Eff
33.3
NA
32.8
32.8
31.9
32.7 | 32.7
32.2
30.8
NA
31.9 | Eff
31.4
31.6
30.8
NA
31.3 | Inf
32.9
33.6
32.2
32.9
AMMON
Inf
31.3 | JUN
Eff
32.5
33.3
31.6
32.5
JUN
Eff
31.7 | Inf 30.8 32.8 34.4 32.9 32.7 2008 Inf 32.9 | Eff
30.5
31.9
33.3
33.0
32.2
JUL
Eff
33.0 | 31.4
33.3
31.1
30.9
31.7 | Eff
30.5
31.6
29.7
30.0
30.5
AUG
Eff
32.2 | 29.4
31.9
33.6
32.4
31.8
Inf | Eff
29.7
31.4
32.8
31.6
31.4
SEP
Eff
31.6 | 32.5
31.4
34.4
32.5
32.7
Inf
31.6 | Eff
31.6
30.8
33.3
31.1
31.7
OCT
Eff
30.0 | 32.8
34.4
29.4
28.3
31.2 | Eff
31.9
32.8
29.4
28.3
30.6
NOV
Eff | 8.3
30.7
28.8
22.6
Inf
32.5 | 27.4
29.4
28.6
28.5
DEC
Eff
31.1 | | 1
2
3
4
Average | 31.9
31.1
31.4
29.4
31.0
Inf
31.1
27.1
31.9
30.2 | 31.6
31.1
32.2
29.7
31.2
JAN
Eff
30.8
27.4
31.6
29.4 | 33.3
31.6
29.4
31.4
31.4
40.5
31.4
30.0
29.4 | Eff
33.0
31.4
28.6
31.0
FEB
Eff
29.7
30.8
29.4
27.4 | 29.7
30.4
32.4
32.5
31.3
Inf
30.7
30.5
30.9
32.0 | Eff 30.0 30.5 31.1 32.5 31.0 MAR Eff 30.8 30.8 30.8 32.2 | 33.6
NA
33.5
33.3
31.9
33.1
Inf
32.2
33.0
31.6
34.7 | Eff 33.3 NA 32.8 32.8 31.9 32.7 APR Eff 31.9 31.6 33.6 34.2 | 32.7
32.2
30.8
NA
31.9
Inf
32.8
33.9
30.6 | Eff
31.4
31.6
30.8
NA
31.3
MAY
Eff
31.4
32.2
31.3 | Inf
32.9
33.6
32.2
32.9
AMMON
Inf
31.3
31.9
31.3
31.6 | JUN Eff 32.5 33.3 31.6 32.5 JIA (mg/L) JUN Eff 31.7 31.1 30.7 31.1 | Inf
30.8
32.8
34.4
32.9
32.7
2008
Inf
32.9
31.9
32.5
32.1 | Eff
30.5
31.9
33.3
33.0
32.2
JUL
Eff
33.0
31.4
32.2
31.1 | 31.4
33.3
31.1
30.9
31.7
Inf
30.8
30.8
31.6
32.9 | 30.5
31.6
29.7
30.0
30.5
AUG
Eff
32.2
32.2
31.4
33.6 | 29.4
31.9
33.6
32.4
31.8
Inf
31.9
31.6
31.6
31.3 | Eff
29.7
31.4
32.8
31.6
31.4
SEP
Eff
31.6
31.1
30.8
30.0 | 32.5
31.4
34.4
32.5
32.7
Inf
31.6
32.8
32.7
30.8 | Eff
31.6
30.8
33.3
31.1
31.7
OCT
Eff
30.0
30.5
30.8
31.6 | 32.8
34.4
29.4
28.3
31.2
Inf
30.8
31.1
31.9 | 29.4
28.3
30.6
NOV
Eff
30.0
29.4
30.8 | 8.3
30.7
28.8
22.6
Inf
32.5
32.4
25.5
28.6 | 27.4
29.4
28.6
28.5
DEC
Eff
31.1
31.4
24.6
28.3 | | 1 2 3 4 Average Week 1 2 3 | 31.9
31.1
31.4
29.4
31.0
Inf
31.1
27.1
31.9 | Eff
31.6
31.1
32.2
29.7
31.2
JAN
Eff
30.8
27.4
31.6 | 33.3
31.6
29.4
31.4
Inf
40.5
31.4
30.0 | Eff
33.0
31.4
28.6
31.0
FEB
Eff
29.7
30.8
29.4 | 29.7
30.4
32.4
32.5
31.3
Inf
30.7
30.5
30.9 | Eff
30.0
30.5
31.1
32.5
31.0
MAR
Eff
30.8
30.8 | 33.6
NA
33.5
33.3
31.9
33.1
Inf
32.2
33.0
31.6 | Eff
33.3
NA
32.8
31.9
32.7
APR
Eff
31.9
31.6
33.6 | 32.7
32.2
30.8
NA
31.9
Inf | Eff
31.4
31.6
30.8
NA
31.3
MAY
Eff
31.4
32.2 | Inf
32.9
33.6
32.2
32.9
AMMON
Inf
31.3
31.9
31.3 | JUN Eff 32.5 33.3 31.6 32.5 JIA (mg/L) JUN Eff 31.7 31.1 30.7 | Inf
30.8
32.8
34.4
32.9
32.7
2008
Inf
32.9
31.9
32.5 | Eff
30.5
31.9
33.3
33.0
32.2
JUL
Eff
33.0
31.4
32.2 | 31.4
33.3
31.1
30.9
31.7
Inf
30.8
30.8
31.6 | Eff
30.5
31.6
29.7
30.0
30.5
AUG
Eff
32.2
32.2
31.4 | 29.4
31.9
33.6
32.4
31.8
Inf
31.9
31.6
31.6 | Eff
29.7
31.4
32.8
31.6
31.4
SEP
Eff
31.6
31.1
30.8 | 32.5
31.4
34.4
32.5
32.7
Inf
31.6
32.8
32.7 | Eff
31.6
30.8
33.3
31.1
31.7
OCT
Eff
30.0
30.5
30.8 | 32.8
34.4
29.4
28.3
31.2
Inf | Eff
31.9
32.8
29.4
28.3
30.6
NOV
Eff
30.0
29.4 | 8.3
30.7
28.8
22.6
Inf
32.5
32.4
25.5 | 27.4
29.4
28.6
28.5
DEC
Eff
31.1
31.4
24.6 | | 1
2
3
4
Average | 31.9
31.1
31.4
29.4
31.0
Inf
31.1
27.1
31.9
30.2 | 31.6
31.1
32.2
29.7
31.2
JAN
Eff
30.8
27.4
31.6
29.4 | 33.3
31.6
29.4
31.4
31.4
40.5
31.4
30.0
29.4 | Eff
33.0
31.4
28.6
31.0
FEB
Eff
29.7
30.8
29.4
27.4 | 29.7
30.4
32.4
32.5
31.3
Inf
30.7
30.5
30.9
32.0 | Eff 30.0 30.5 31.1 32.5 31.0 MAR Eff 30.8 30.8 30.8 32.2 | 33.6
NA
33.5
33.3
31.9
33.1
Inf
32.2
33.0
31.6
34.7 | Eff 33.3 NA 32.8 32.8 31.9 32.7 APR Eff 31.9 31.6 33.6 34.2 | 32.7
32.2
30.8
NA
31.9
Inf
32.8
33.9
30.6 | Eff
31.4
31.6
30.8
NA
31.3
MAY
Eff
31.4
32.2
31.3 | Inf
32.9
33.6
32.2
32.9
AMMON
Inf
31.3
31.9
31.6
31.5 | JUN Eff 32.5 33.3 31.6 JUN Eff 32.5 JUN Eff 31.7 31.1 30.7 31.1 31.2 | Inf 30.8 32.8 34.4 32.9 32.7 2008 Inf 32.9 31.9 32.5 32.1 32.4 | Eff
30.5
31.9
33.3
33.0
32.2
JUL
Eff
33.0
31.4
32.2
31.1 | 31.4
33.3
31.1
30.9
31.7
Inf
30.8
30.8
31.6
32.9 | 30.5
31.6
29.7
30.0
30.5
AUG
Eff
32.2
32.2
31.4
33.6 | 29.4
31.9
33.6
32.4
31.8
Inf
31.9
31.6
31.6
31.3 | Eff
29.7
31.4
32.8
31.6
31.4
SEP
Eff
31.6
31.1
30.8
30.0 | 32.5
31.4
34.4
32.5
32.7
Inf
31.6
32.8
32.7
30.8 | Eff
31.6
30.8
33.3
31.1
31.7
OCT
Eff
30.0
30.5
30.8
31.6 | 32.8
34.4
29.4
28.3
31.2
Inf
30.8
31.1
31.9 | 29.4
28.3
30.6
NOV
Eff
30.0
29.4
30.8 | 8.3
30.7
28.8
22.6
Inf
32.5
32.4
25.5
28.6 | 27.4
29.4
28.6
28.5
DEC
Eff
31.1
31.4
24.6
28.3 | | 1
2
3
4
Average | 31.9
31.1
31.4
29.4
31.0
Inf
31.1
27.1
31.9
30.2 | 31.6
31.1
32.2
29.7
31.2
JAN
Eff
30.8
27.4
31.6
29.4 | 33.3
31.6
29.4
31.4
31.4
40.5
31.4
30.0
29.4 | Eff
33.0
31.4
28.6
31.0
FEB
Eff
29.7
30.8
29.4
27.4 | 29.7
30.4
32.4
32.5
31.3
Inf
30.7
30.5
30.9
32.0 | Eff 30.0 30.5 31.1 32.5 31.0 MAR Eff 30.8 30.8 30.8 32.2 | 33.6
NA
33.5
33.3
31.9
33.1
Inf
32.2
33.0
31.6
34.7 | Eff 33.3 NA 32.8 32.8 31.9 32.7 APR Eff 31.9 31.6 33.6 34.2 | 32.7
32.2
30.8
NA
31.9
Inf
32.8
33.9
30.6 | Eff
31.4
31.6
30.8
NA
31.3
MAY
Eff
31.4
32.2
31.3 | Inf
32.9
33.6
32.2
32.9
AMMON
Inf
31.3
31.9
31.6
31.5 | JUN Eff 32.5 33.3 31.6 32.5 JIA (mg/L) JUN Eff 31.7 31.1 30.7 31.1 | Inf 30.8 32.8 34.4 32.9 32.7 2008 Inf 32.9 31.9 32.5 32.1 32.4 | Eff
30.5
31.9
33.3
33.0
32.2
JUL
Eff
33.0
31.4
32.2
31.1 | 31.4
33.3
31.1
30.9
31.7
Inf
30.8
30.8
31.6
32.9 | 30.5
31.6
29.7
30.0
30.5
AUG
Eff
32.2
32.2
31.4
33.6 | 29.4
31.9
33.6
32.4
31.8
Inf
31.9
31.6
31.6
31.3 | Eff
29.7
31.4
32.8
31.6
31.4
SEP
Eff
31.6
31.1
30.8
30.0 |
32.5
31.4
34.4
32.5
32.7
Inf
31.6
32.8
32.7
30.8 | Eff
31.6
30.8
33.3
31.1
31.7
OCT
Eff
30.0
30.5
30.8
31.6 | 32.8
34.4
29.4
28.3
31.2
Inf
30.8
31.1
31.9 | 29.4
28.3
30.6
NOV
Eff
30.0
29.4
30.8 | 8.3
30.7
28.8
22.6
Inf
32.5
32.4
25.5
28.6 | 27.4
29.4
28.6
28.5
DEC
Eff
31.1
31.4
24.6
28.3 | | 1
2
3
4
Average | 31.9
31.1
31.4
29.4
31.0
Inf
31.1
27.1
31.9
30.2 | 31.6
31.1
32.2
29.7
31.2
JAN
Eff
30.8
27.4
31.6
29.4 | 33.3
31.6
29.4
31.4
31.4
40.5
31.4
30.0
29.4 | Eff
33.0
31.4
28.6
31.0
FEB
Eff
29.7
30.8
29.4
27.4 | 29.7
30.4
32.4
32.5
31.3
Inf
30.7
30.5
30.9
32.0 | Eff
30.0
30.5
31.1
32.5
31.0
MAR
Eff
30.8
30.8
30.8
32.2 | 33.6
NA
33.5
33.3
31.9
33.1
Inf
32.2
33.0
31.6
34.7 | Eff
33.3
NA
32.8
32.8
31.9
32.7
APR
Eff
31.6
33.6
34.2 | 32.7
32.2
30.8
NA
31.9
Inf
32.8
33.9
30.6 | Eff
31.4
31.6
30.8
NA
31.3
MAY
Eff
31.4
32.2
31.3
31.6 | Inf
32.9
33.6
32.2
32.9
AMMON
Inf
31.3
31.9
31.6
31.5 | JUN Eff 32.5 33.3 31.6 32.5 JIA (mg/L) JUN Eff 31.7 31.1 30.7 31.1 31.2 JIA (mg/L) | Inf 30.8 32.8 34.4 32.9 32.7 2008 Inf 32.9 31.9 32.5 32.1 32.4 | Eff
30.5
31.9
33.3
33.0
32.2
JUL
Eff
33.0
31.4
32.2
31.1 | 31.4
33.3
31.1
30.9
31.7
Inf
30.8
30.8
31.6
32.9 | Eff
30.5
31.6
29.7
30.0
30.5
AUG
Eff
32.2
31.4
33.6
32.4 | 29.4
31.9
33.6
32.4
31.8
Inf
31.9
31.6
31.6
31.3 | SEP Eff 31.4 SEP Eff 31.1 30.8 30.0 30.9 | 32.5
31.4
34.4
32.5
32.7
Inf
31.6
32.8
32.7
30.8 | 0CT Eff 30.8 31.6 30.8 31.1 31.7 0CT Eff 30.0 30.5 30.8 31.6 30.7 | 32.8
34.4
29.4
28.3
31.2
Inf
30.8
31.1
31.9 | 31.9
32.8
29.4
28.3
30.6
NOV
Eff
30.0
29.4
30.8
30.1 | 8.3
30.7
28.8
22.6
Inf
32.5
32.4
25.5
28.6 | 27.4
29.4
28.6
28.5
DEC
Eff
31.1
31.4
24.6
28.3 | | 1 2 3 4 Average Week 1 2 3 4 Average | 31.9
31.1
31.4
29.4
31.0
Inf
31.1
27.1
31.9
30.2 | 31.6
31.1
32.2
29.7
31.2
JAN
Eff
30.8
27.4
31.6
29.4 | 33.3
31.6
29.4
31.4
Inf
40.5
31.4
30.0
29.4
32.8 | Eff
33.0
31.4
28.6
31.0
FEB
Eff
29.7
30.8
29.4
27.4
29.3
FEB
Eff
30.0 | 29.7
30.4
32.4
32.5
31.3
Inf
30.7
30.5
30.9
32.0
31.0 | Eff
30.0
30.5
31.1
32.5
31.0
MAR
Eff
30.8
30.8
30.8
32.2 | 33.6
NA
33.5
33.3
31.9
33.1
Inf
32.2
33.0
31.6
34.7
32.9 | Eff 33.3 NA 32.8 32.8 31.9 32.7 APR Eff 31.6 33.6 34.2 32.8 APR Eff 33.6 | 32.7
32.2
30.8
NA
31.9
Inf
32.8
33.9
30.6
32.4 | Eff
31.4
31.6
30.8
NA
31.3
MAY
Eff
31.4
32.2
31.3
31.6
MAY
Eff | Inf 32.9 33.6 32.2 32.9 AMMON Inf 31.3 31.9 31.6 31.5 AMMON Inf | JUN Eff 32.5 33.3 31.6 32.5 JIA (mg/L) JUN Eff 31.7 31.1 30.7 31.1 31.2 JUN Eff 33.6 | Inf 30.8 32.8 34.4 32.9 32.7 2008 Inf 32.9 31.9 32.5 32.1 32.4 2009 Inf 34.6 | 30.5
31.9
33.3
33.0
32.2
30.1
Eff
33.0
31.4
32.2
31.1
31.9
30.1
31.9 | 31.4
33.3
31.1
30.9
31.7
Inf
30.8
30.8
31.6
32.9
31.5 | Eff
30.5
31.6
29.7
30.0
30.5
AUG
Eff
32.2
32.2
31.4
33.6
32.4
AUG
Eff
31.6 | 29.4
31.9
33.6
32.4
31.8
Inf
31.9
31.6
31.6
31.3 | Eff
29.7
31.4
32.8
31.6
31.4
SEP
Eff
31.6
31.1
30.8
30.0
30.9 | 32.5
31.4
34.4
32.5
32.7
Inf
31.6
32.8
32.7
30.8
32.0 | Eff 31.6 30.8 33.3 31.1 31.7 OCT Eff 30.0 30.5 30.8 31.6 30.7 OCT Eff 34.2 | 32.8
34.4
29.4
28.3
31.2
Inf
30.8
31.1
31.9
31.3 | 31.9
32.8
29.4
28.3
30.6
NOV
Eff
30.0
29.4
30.8
30.1
NOV
Eff
33.9 | 8.3
30.7
28.8
22.6
22.6
32.5
32.4
25.5
28.6
29.8 | 27.4
29.4
28.6
28.5
DEC
Eff
31.1
31.4
24.6
28.3
28.9
DEC
Eff | | 1 2 3 4 4 Average Week 1 2 3 4 Average | 31.9
31.1
31.4
29.4
31.0
Inf
31.1
27.1
31.9
30.2
30.1 | 31.6
31.1
32.2
29.7
31.2
JAN
Eff
30.8
27.4
31.6
29.4
29.8
JAN
Eff
29.8 | 33.3
31.6
29.4
31.4
31.4
40.5
31.4
30.0
29.4
32.8
Inf
31.3
28.3 | Eff
33.0
31.4
28.6
31.0
FEB
Eff
29.7
30.8
29.4
27.4
29.3
FEB
Eff
30.0
27.4 | 29.7
30.4
32.4
32.5
31.3
Inf
30.7
30.5
30.9
32.0
31.0 | Eff 30.0 30.5 31.1 32.5 31.0 MAR Eff 30.8 30.8 30.8 32.2 31.2 MAR Eff | 33.6
NA
33.5
33.3
31.9
33.1
Inf
32.2
33.0
31.6
34.7
32.9
Inf
34.9
34.2 | Eff 33.3 NA 32.8 31.9 32.7 APR Eff 31.6 33.6 34.2 32.8 APR Eff 33.6 33.6 34.2 | 32.7
32.2
30.8
NA
31.9
Inf
32.8
33.9
30.6
32.4
Inf
31.0
34.4 | Eff
31.4
31.6
30.8
NA
31.3
MAY
Eff
31.4
32.2
31.3
31.6
MAY
Eff
29.7
33.3 | Inf 32.9 33.6 32.2 32.9 AMMON Inf 31.3 31.6 31.5 AMMON Inf 34.3 33.6 | JUN Eff 32.5 33.3 31.6 32.5 JIA (mg/L) JUN Eff 31.7 31.1 30.7 31.1 JUN Eff JUN Eff 31.7 31.2 JUN Eff 33.6 33.6 33.9 | Inf 30.8 32.8 34.4 32.9 32.7 2008 Inf 32.9 31.9 32.5 32.1 32.4 2009 Inf 34.6 33.6 | Eff
30.5
31.9
33.3
33.0
32.2
JUL
Eff
33.0
31.4
32.2
31.1
31.9
JUL
Eff
33.6
31.4 | 31.4
33.3
31.1
30.9
31.7
Inf
30.8
30.8
31.6
32.9
31.5 | Eff
30.5
31.6
29.7
30.0
30.5
AUG
Eff
32.2
31.4
33.6
32.4
AUG
Eff
31.6
31.9 | 29.4
31.9
33.6
32.4
31.8
31.8
Inf
31.9
31.6
31.6
31.3
31.6 | SEP Eff 31.6 31.1 30.8 30.0 30.9 SEP Eff 29.1 | 32.5
31.4
34.4
32.5
32.7
31.6
32.8
32.7
30.8
32.0
Inf
34.9
33.0 | Eff 31.6 30.8 33.3 31.1 31.7 OCT Eff 30.0 30.5 30.8 31.6 30.7 OCT Eff 34.2 31.9 | 32.8
34.4
29.4
28.3
31.2
Inf
30.8
31.1
31.9
31.3 | 31.9
32.8
29.4
28.3
30.6
NOV
Eff
30.0
29.4
30.8
30.1
NOV
Eff
33.9
32.8 | 8.3
30.7
28.8
22.6
21.6
22.6
32.5
32.4
25.5
28.6
29.8
10.7
32.9
26.3 | 27.4
29.4
28.6
28.5
DEC
Eff
31.1
31.4
24.6
28.3
28.9
DEC
Eff
32.5
26.0 | | 1 2 3 4 Average Week 1 2 3 4 Average Week 1 2 3 4 Average | 31.9
31.1
31.4
29.4
31.0
Inf
31.1
27.1
31.9
30.2
30.1
Inf
29.7
29.7
28.7 | JAN Eff 30.8 27.4 31.6 29.4 29.8 JAN Eff 28.8 29.2 29.1 | 33.3
31.6
29.4
31.4
Inf
40.5
31.4
30.0
29.4
32.8
Inf
31.3
28.3
29.1 | Eff
33.0
31.4
28.6
31.0
FEB
Eff
29.7
30.8
29.4
27.4
29.3
FEB
Eff
30.0
27.4
28.8 | 29.7
30.4
32.4
32.5
31.3
Inf
30.7
30.9
32.0
31.0
Inf | Eff
30.0
30.5
31.1
32.5
31.0
MAR
Eff
30.8
30.8
32.2
31.2
MAR
Eff | 33.6
NA
33.5
33.3
31.9
33.1
Inf
32.2
33.0
31.6
34.7
32.9
Inf
34.9
34.2
33.3 | Eff 33.3 NA 32.8 31.9 32.7 APR Eff 31.6 33.6 34.2 32.8 APR Eff 33.6 34.2 32.8 | 32.7
32.2
30.8
NA
31.9
Inf
32.8
33.9
30.6
32.4
Inf
31.0
34.4
33.9 | Eff
31.4
31.6
30.8
NA
31.3
MAY
Eff
31.4
32.2
31.3
31.6
MAY
Eff
29.7
33.3
32.8 | Inf
32.9
33.6
32.2
32.9
AMMON
Inf
31.3
31.6
31.5
AMMON
Inf
34.3
33.6
34.4 | JUN Eff 32.5 JIA (mg/L) JUN Eff 31.7 31.1 30.7 31.1 JUN Eff 33.6 31.6 | Inf
30.8
32.8
34.4
32.9
32.7
2008
Inf
32.9
31.9
32.5
32.1
32.4
2009
Inf
34.6
33.6
32.5 | 30.5
31.9
33.3
33.0
32.2
JUL
Eff
33.0
31.4
32.2
31.1
31.9
JUL
Eff
33.6
31.4
31.9 | 31.4
33.3
31.1
30.9
31.7
Inf
30.8
31.6
32.9
31.5 | AUG
Eff
30.5
31.6
29.7
30.0
30.5
AUG
Eff
32.2
32.2
31.4
33.6
32.4
AUG
Eff
31.9
30.2 | 29.4
31.9
33.6
32.4
31.8
Inf
31.9
31.6
31.6
31.3
31.6 | Eff
29.7
31.4
32.8
31.6
31.4
SEP
Eff
31.6
31.1
30.8
30.0
30.9
SEP
Eff | 32.5
31.4
34.4
32.5
32.7
Inf
31.6
32.8
32.7
30.8
32.0
Inf
34.9
33.0
31.6 | Eff 31.6 30.8 33.3 31.1 31.7 OCT Eff 30.0 30.5 30.8 31.6 30.7 OCT Eff 34.2 31.9 31.1 | 32.8
34.4
29.4
28.3
31.2
Inf
30.8
31.1
31.9
31.3 | 31.9
32.8
29.4
28.3
30.6
NOV
Eff
30.0
29.4
30.8
30.1
NOV
Eff
33.9
36.4 | 8.3
30.7
28.8
22.6
21.6
22.6
22.5
32.5
28.6
29.8
29.8 | 27.4
29.4
28.6
28.5
DEC
Eff
31.1
31.4
24.6
28.3
28.9
DEC
Eff
32.5
26.0
29.7 | | 1 2 3 4 4 Average Week 1 2 3 4 Average | 31.9
31.1
31.4
29.4
31.0
Inf
31.1
27.1
31.9
30.2
30.1 | 31.6
31.1
32.2
29.7
31.2
JAN
Eff
30.8
27.4
31.6
29.4
29.8
JAN
Eff
29.8 | 33.3
31.6
29.4
31.4
31.4
40.5
31.4
30.0
29.4
32.8
Inf
31.3
28.3 | Eff
33.0
31.4
28.6
31.0
FEB
Eff
29.7
30.8
29.4
27.4
29.3
FEB
Eff
30.0
27.4 |
29.7
30.4
32.4
32.5
31.3
Inf
30.7
30.5
30.9
32.0
31.0 | Eff 30.0 30.5 31.1 32.5 31.0 MAR Eff 30.8 30.8 30.8 32.2 31.2 MAR Eff | 33.6
NA
33.5
33.3
31.9
33.1
Inf
32.2
33.0
31.6
34.7
32.9
Inf
34.9
34.2 | Eff 33.3 NA 32.8 31.9 32.7 APR Eff 31.6 33.6 34.2 32.8 APR Eff 33.6 33.6 34.2 | 32.7
32.2
30.8
NA
31.9
Inf
32.8
33.9
30.6
32.4
Inf
31.0
34.4 | Eff
31.4
31.6
30.8
NA
31.3
MAY
Eff
31.4
32.2
31.3
31.6
MAY
Eff
29.7
33.3 | Inf 32.9 33.6 32.2 32.9 AMMON Inf 31.3 31.6 31.5 AMMON Inf 34.3 33.6 | JUN Eff 32.5 33.3 31.6 32.5 JIA (mg/L) JUN Eff 31.7 31.1 30.7 31.1 JUN Eff JUN Eff 31.6 31.9 JUN Eff 33.6 31.9 | Inf 30.8 32.8 34.4 32.9 32.7 2008 Inf 32.9 31.9 32.5 32.1 32.4 2009 Inf 34.6 33.6 | Eff
30.5
31.9
33.3
33.0
32.2
JUL
Eff
33.0
31.4
32.2
31.1
31.9
JUL
Eff
33.6
31.4 | 31.4
33.3
31.1
30.9
31.7
Inf
30.8
30.8
31.6
32.9
31.5 | Eff
30.5
31.6
29.7
30.0
30.5
AUG
Eff
32.2
31.4
33.6
32.4
AUG
Eff
31.6
31.9 | 29.4
31.9
33.6
32.4
31.8
31.8
Inf
31.9
31.6
31.6
31.3
31.6 | SEP Eff 31.6 31.1 30.8 30.0 30.9 SEP Eff 29.1 | 32.5
31.4
34.4
32.5
32.7
31.6
32.8
32.7
30.8
32.0
Inf
34.9
33.0 | Eff 31.6 30.8 33.3 31.1 31.7 OCT Eff 30.0 30.5 30.8 31.6 30.7 OCT Eff 34.2 31.9 | 32.8
34.4
29.4
28.3
31.2
Inf
30.8
31.1
31.9
31.3 | 31.9
32.8
29.4
28.3
30.6
NOV
Eff
30.0
29.4
30.8
30.1
NOV
Eff
33.9
32.8 | 8.3
30.7
28.8
22.6
21.6
22.6
32.5
32.4
25.5
28.6
29.8
10.7
32.9
26.3 | 27.4
29.4
28.6
28.5
DEC
Eff
31.1
31.4
24.6
28.3
28.9
DEC
Eff
32.5
26.0 | | March 10 | | | | | | | | | | | | CYAN | IDE (mg/L) | 2004 | | | | | | | | | | | | |--|-----------|------------|-----------|-----------|-----------|-----------|-----------|------------|------------|------------|------------|--------------|------------|--------|-------|-------|-------|-------|-------|-------|--------|-------|-------|-------|-------| | 1 | \$\$\ \begin{array}{c c c c c c c c c c c c c c c c c c c | | | | Inf | Eff | 3 | | | | 0 003 | 0 003 | | | | | | | | | | | | | | | | | 0.005 | | | | | A 0.003 0.000 0. | | | | | | | | | | | | | | ND | ND | | | | | | | 0.002 | | | | | CAMIDIC (May 1) Total To | | | | | | | | | | | | | | 0.003 | 0.002 | | | | | | | | | | | | March Marc | Avg | 0.003 | 0.003 | 0.003 | 0.003 | 0.003 | 0.003 | 0.003 | 0.002 | 0.003 | 0.002 | 0.001 | 0.001 | 0.002 | 0.002 | 0.002 | 0.001 | 0.003 | 0.003 | 0.003 | 0.003 | 0.002 | 0.003 | 0.002 | 0.003 | | March Marc | | | | | | | | | | | | G) / 4 1 1 1 | | | | | | | | | | | | | | | New Total Fef | | | JAN | | EER | | MAD | | ADD | | MAV | CYAN | |) 2005 | 7111 | | ALIG | | SED | | ОСТ | | NOV | | DEC | | 1 | Week | Inf | | 2 | A | | 0.003 | 0.002 | | | | | | | 0.002 | 0.002 | | | | | | | | | | | 0.002 | 0.002 | | | | Average 0.003 0.002 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.002 0. | 3 | 0.002 | 0.002 | 0.003 | 0.003 | 0.002 | 0.003 | 0.003 | 0.003 | 0.002 | 0.002 | 0.002 | 0.002 | 0.003 | 0.002 | 0.003 | 0.002 | 0.003 | 0.003 | 0.002 | 0.002 | 0.002 | ND | 0.004 | 0.003 | | Note | Table Tabl | Average | 0.003 | 0.002 | 0.003 | 0.003 | 0.003 | 0.003 | 0.003 | 0.003 | 0.002 | 0.002 | 0.002 | 0.002 | 0.003 | 0.003 | 0.002 | 0.002 | 0.002 | 0.001 | 0.002 | 0.001 | 0.001 | 0.001 | 0.004 | 0.002 | | Table Tabl | | | | | | | | | | | | CYAN | IDE (mg/L) | 2006 | | | | | | | | | | | | | 1 9.892 6.892 6.893 6.892 6.893 6.892 76.893 8.902 76.892 NO 100 100 100 NO | 2 0.802 (0.802 0.802 0.803 0.803 0.803 0.802 0.803 0.802 0.803 0.802
0.802 0.8 | 3 | ## 0.802 | ## Average 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0 | _ | | | | | 0.002 | (0.002 | | | | | | | | | | | 0.003 | ND | | | | | | | | *Sample P3459S and P3459S were analyzed one day out of the 14 day holding time for cyanide analysis. **Sample P3459S and P3459S were analyzed one day out of the 14 day holding time for cyanide analysis. **Table P3459S and P3455S and P3455S were analyzed one day out of the 14 day holding time for cyanide analysis. **Table P3459S and P3455S and P3455S and P3455S and P345S and P3455S P3455 | Average | | | | | 0.002 | 0.001 | | | | | | | | | | | 0.001 | ND | | | | | | | | No | *C1- F | 224505 | J D242500 | | | A | C +b - 14 | 4 | | | | | | | | | | | | | | | | | | | No | *Sample F | 234505 and | D P343508 | were anaı | lyzed one | day out o | T The 14 | day noidir | ng time to | or cyanide | e anaiysis | • | | | | | | | | | | | | | | | No | | | | | | | | | | | | CYAN] | | 2007 | | | | | | | | | | | | | 1 | 2 0.002 0.002 0.002 0.003 ND 0.002 0.003 ND 0.002 0.003 ND | Inf | Eff | | 3 | ND | ND | | A verage 0.001 ND ND ND ND ND ND ND N | Average 0.001 0.002 0.003 0.002 0.003 0.002 ND 0.001 ND ND ND ND ND ND ND N | | | | 0.002 | 0.003 | CYANIDE (mg/L) 2008 JAN | | | | | | | | ND | ND | | | | | | | | | | | | | | | | | | Meek Inf Eff | Average | 0.001 | 0.001 | 0.002 | 0.003 | 0.002 | ND | 0.001 | ND | ND | ND | ND | ND | 0.001 | ND | ND | ND | 0.002 | 0.001 | ND | 0.000 | ND | 0.000 | ND | ND | | Meek Inf Eff | | | | | | | | | | | | CVANI | [DF (mg/L) | 2008 | | | | | | | | | | | | | Week Inf Eff | | | JAN | | FEB | | MAR | | APR | | MAY | CIAN | | , 2000 | JUL | | AUG | | SEP | | ОСТ | | NOV | | DEC | | 2 ND | Week | Inf | Eff | Inf | | 3 ND 0.002 ND | 1 | ND | | ND <0.002 | | | ND | ND | | Average ND ND ND ND ND 0.002 0.002 ND | Average ND ND ND ND 0.001 0.000 0.001 ND | CYANIDE (mg/L) 2009 JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC Week Inf Eff | Second Column Colum | Average | ND | ND | ND | ND | 0.001 | 0.000 | 0.001 | ND 0.001 | 0.000 | ND | 0.001 | ND | 0.002 | 0.001 | 0.001 | | Week Inf Eff <td></td> <td>CYAN</td> <td></td> <td>2009</td> <td></td> | | | | | | | | | | | | CYAN | | 2009 | | | | | | | | | | | | | 1 ND ND ND 0.003 0.002 0.003 ND 0.002 0.003 ND 0.002 0.003 ND 0.002 0.003 ND ND ND ND 0.002 ND 0.002 ND 0.002 ND 0.002 0.003 ND ND ND ND ND ND ND 0.002 0.025 ND 0.002 0.003 0.002 0.003 ND 0.002 0.003 ND 0.002 0.002 0.002 0.002 0.002 0.003 ND 0.002 0.002 0.002 0.003 ND 0.002 0.002 0.003 ND 0.002 0.003 0.002 0.002 0.003 | | _ | | | | | | | | | | | | _ | | | | | | | | _ | | _ | | | 2 0.002 <0.002 ND ND 0.002 0.003 0.002 0.003 ND 0.002 0.003 ND 0.002 0.003 ND ND ND ND ND 0.002 0.025 ND 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 ND ND ND ND ND ND ND ND 0.002 ND 0.002 ND 0.002 ND ND ND 0.002 ND ND ND 0.002 ND ND ND 0.002 ND ND 0.002 ND ND 0.002 ND ND 0.002 | | | | | | Inf | Eff | | | | | | | | | | | Inf | Eff | | | | | | | | 3 0.002 <0.002 ND <0.002 0.002 0.002 ND ND ND ND ND ND ND ND ND 0.002 <0.002 0.003 ND 0.002 ND 0.002 ND ND ND ND 0.002 0.002 0.003 ND 0.002 0.003 0.002 0.002 0.003 ND 0.002 0.002 0.002 0.002 0.003 ND 0.002 0.002 0.002 0.002 | | | | | | 0.002 | 0.003 | | | | | | | | | | | 0.003 | 0.025 | | | | | | | | 4 0.002 0.003 ND 0.002 0.003 0.003 ND 0.002 0.002 0.002 0.003 0.002 0.003 ND ND ND ND 0.002 0.002 0.003 ND 0.002 0.002 0.002 0.002 | _ | 0.002 | 0.003 | ND | 0.002 | 0.003 | 0.003 | ND | 0.002 | 0.002 | 0.003 | 0.002 | 0.003 | ND | ND | ND | 0.002 | 0.002 | 0.003 | ND | 0.003 | 0.002 | 0.002 | 0.002 | 0.003 | | | | | | | | | | | | EI | FFLUENT RA | DIATION (| (pCi/L) 20 | 0 4 | | | | | | | | | | | |--------------|-------|------|-------|------|-------|-------|-------|------|-------|------|-------------|-----------|--------------|------------|-------|------|-------|------|-------|------|-------|-------|-------|------| | | | JAN | | FEB | | MAR | | APR | | MAY | | JUN | | JUL | | AUG | | SEP | | OCT | | NOV | | DEC | | Week | alpha | beta | 1 | 3 | 16.1 | | | 2.2 | 14.8 | 0.3 | 21.5 | | | 1 | 1 | 14.5 | 0.9 | 26.3 | | | | 1.7 | 21.1 | 0.9 | 17 | 1.7 | 25.7 | | 2 | | | 1.9 | 16.4 | | | | | 0.8 | 15.9 | | | | | | 0.9 | 20.8 | 23.1 | | | | | | | | 3 | 4 | Avg | 3 | 16.1 | 1.9 | 16.4 | 2.2 | 14.8 | 0.3 | 21.5 | 0.8 | 15.9 | 1 | 1 | 14.5 | 0.9 | 26.3 | 0.9 | 20.8 | 23.1 | 1.7 | 21.1 | 0.9 | 17 | 1.7 | 25.7 | | | | | | | | | | | | EI | FFLUENT RA | DIATION (| (pCi/L) 20 | 2 5 | | | | | | | | | | | | | | JAN | | FEB | | MAR | | APR | | MAY | | JUN | | JUL | | AUG | | SEP | | OCT | | NOV | | DEC | | Week | alpha | beta | 1 | | | 3.2 | 18.9 | 2.5 | 8.8 | 1.1 | 16.8 | | | 3 | 19.3 | 1.3 | 14.3 | | | 2 | 11.7 | 1.9 | 13.1 | | | 2.7 | 18.1 | | 2 | 1.5 | 15 | | | | | | | 2.9 | 13.9 | | | | | 1.3 | 20.2 | | | | | 0.7 | 25.7 | | | | 3 | Average | 1.5 | 15 | 3.2 | 18.9 | 2.5 | 8.8 | 1.1 | 16.8 | 2.9 | 13.9 | 3 | 19.3 | 1.3 | 14.3 | 1.3 | 20.2 | 2 | 16.9 | 1.9 | 13.1 | 0.7 | 25.7 | 2.7 | 18.1 | | | | | | | | | | | | - | FELLIENT DA | DIATION / | (mCi /I) 20 | 26 | | | | | | | | | | | | | | JAN | | FEB | | MAR | | APR | | MAY | FFLUENT RA | JUN (| (PCI/L) 20 | JUL | | AUG | | SEP | | ОСТ | | NOV | | DEC | | Week | alpha | beta | 1 | 0.7 | 12.3 | 0.7 | 38.3 | 2.7 | 10.5 | 2.7 | 10.9 | агриа | occu | 1.0 | 12.1 | 1.6 | 14.6 | 1.5 | 13.3 | 0.7 | 10.7 | 0.2 | 13.4 | 2.7 | 17.7 | 1.9 | 12.8 | | 2 | 0., | 12.5 | 0., | 30.3 | 217 | 1015 | 2.,, | 1015 | 1.5 | 16.3 | 1.0 | | 2.0 | 20 | 2.5 | 13.5 | 017 | 1017 | 0.2 | 23 | | 27.17 | 2.,, | 12.0 | | 3 | 4 | Average | 0.7 | 12.3 | 0.7 | 38.3 | 2.7 | 10.5 | 2.7 | 10.9 | 1.5 | 16.3 | 1.0 | 12.1 | 1.6 | 14.6 | 1.5 | 13.3 | 0.7 | 10.7 | 0.2 | 13.4 | 2.7 | 17.7 | 1.9 | 12.8 | | | | | | | | | | | | EI | FFLUENT RA | DIATION (| (pCi/L) 20 | 2 7 | | | | | | | | | | | | | | JAN | | FEB | | MAR | | APR | | MAY | | JUN | | JUL | | AUG | | SEP | | OCT | | NOV | | DEC | | Week | alpha | beta | 1 | 0.6 | 5.5 | 1.5 | 23.9 | 2.3 | 27.7 | 2.8 | 26.3 | | | | | 1.1 | 28.6 | | | 0.8 | 25.4 | 0.2 | 28.0 | | | | | | 2 | | | | | | | | | 1.1 | 29.8 | 1.5 | 20.7 | | | 1.4 | 27.5 | | | | |
2.5 | 24.8 | 1.1 | 19.5 | | 3 | 4
Average | 0.6 | 5.5 | 1.5 | 23.9 | 2.3 | 27.7 | 2.8 | 26.3 | 1.1 | 29.8 | 1.5 | 20.7 | 1.1 | 28.6 | 1.4 | 27.5 | 0.8 | 25.4 | 0.2 | 28.0 | 2.5 | 24.8 | 1.1 | 19.5 | | Average | 0.0 | 3.3 | 1.3 | 23.3 | 2.3 | 2,., | 2.0 | 20.5 | | 25.0 | 1.5 | 20.7 | | 20.0 | | 27.5 | 0.0 | 23.4 | 0.2 | 20.0 | 2.5 | 24.0 | | 15.5 | | | | | | | | | | | | El | FFLUENT RA | DIATION (| (pCi/L) 20 | 28 | | | | | | | | | | | | | | JAN | | FEB | | MAR | | APR | | MAY | | JUN | | JUL | | AUG | | SEP | | OCT | | NOV | | DEC | | Week | alpha | beta | 1 | 1.3 | 25.3 | | | 1.8 | 21.8 | 2.3 | 28.6 | | | 1.4 | 30 | 0.5 | 30.3 | | | 4.5 | 28.1 | 2.7 | 22.2 | | | 6.4 | 24 | | 2 | | | 1.7 | 22.8 | | | | | 1.3 | 23.4 | | | | | 6.1 | 31.3 | | | | | 3.6 | 30 | | | | 3 | 4
Average | 1.3 | 25.3 | 1.7 | 22.8 | 1.8 | 21.8 | 2.3 | 28.6 | 1.3 | 23.4 | 1.4 | 30 | 0.5 | 30.3 | 6.1 | 31.3 | 4.5 | 28.1 | 2.7 | 22.2 | 3.6 | 30 | 6.4 | 24 | | Aver uge | 1.5 | 23.3 | 1., | 22.0 | 1.0 | 21.0 | 2.5 | 20.0 | 1.5 | 23.4 | 1.7 | 30 | 0.5 | 30.3 | 0.1 | 31.3 | 4.5 | 20.1 | 2., | 22.2 | 5.0 | 50 | 0.4 | 27 | | | | | | | | | | | | | FFLUENT RA | DIATION (| (pCi/L) 20 | | | | | | | | | | | | | | | JAN | | FEB | | MAR | | APR | | MAY | | JUN | | JUL | | AUG | | SEP | | OCT | | NOV | | DEC | | Week | alpha | beta | | 1 | 27 | 4.8 | 29.5 | - 1 | 20. 7 | 2.8 | 32.6 | 0.0 | 22.2 | 2.6 | 25.9 | 3.3 | 30.2 | 4 | 34.5 | 2.7 | 37 | 1.3 | 34.8 | 0.6 | 36.1 | 6.4 | 37.5 | | 1 | | | | | | | | | | | | | | | | | 3.7 | ٠., | | | | | | | | 2 | | | | | 5.1 | 28.7 | | | 0.0 | 32.3 | | | | | | | 3., | ٥, | | | | | | | | | | | | | 5.1 | 20.7 | | | 0.0 | 32.3 | | | | | | | 3., | 3, | | | | | | | | | | | | | | | | | | | DRIN AND | | (ng/L) 20 | | | | | | | | | | | | |-----------|-----------|------------|----------|------------|-----------|------------|-----------|------------|-----------|------------|----------|------------|-----------|------------|-----------|------------|-----------|------------|-----------|------------|-----------|------------|----------|------------| | | _ | JAN | _ | FEB | _ | MAR | _ | APR | _ | MAY | _ | JUN | _ | JUL | _ | AUG | _ | SEP | _ | OCT | _ | NOV | _ | DEC | | Week | Inf | Eff | 1 | nd | nd | nd | n d | nd | 2 | nd
nd nd | nd | nd
nd | 4 | nd | Avg | nd | 0 | DRIN AND | | (ng/L) 20 | | | | | | | | | | | | | | | JAN | | FEB | | MAR | | APR | | MAY | | JUN | | JUL | | AUG | | SEP | | OCT | | NOV | | DEC | | Week | Inf | Eff | 1
2 | ND | ND | ND
ND | ND
ND | ND
ND | ND
ND | ND
ND | ND
ND | ND | ND | ND
ND ND | ND | ND
ND | ND
ND | | 3 | ND | 4 | ND | Average | ND | Ü | DRIN AND | | (ng/L) 20 | | | | | | | | | | | | | Marela | T C | JAN | T - C | FEB | T C | MAR | T C | APR | T C | MAY | T C | JUN | T C | JUL | T - C | AUG | T C | SEP | T C | OCT | T C | NOV | T C | DEC | | Week | Inf | Eff Inf
ND | Eff | Inf | Eff | Inf | Eff | | 1
2 | ND
ND | 3 | ND | 4 | ND | Average | ND | · · | DRIN AND | | (ng/L) 20 | | | | | | | | | | | | | Marela | T C | JAN
Eff | T - C | FEB | T C | MAR
Eff | T C | APR
Eff | T C | MAY | T C | JUN | T C | JUL | T - C | AUG | T C | SEP | T C | OCT
Eff | T C | NOV
Eff | T C | DEC | | Week
1 | Inf
ND | ND ND | Inf | Eff | Inf
ND | ND ND | Inf
ND | ND ND | Inf
ND | Eff
ND | Inf | Eff | Inf
ND | Eff
ND | Inf
ND | Eff
ND | Inf
ND | Eff
ND | Inf
ND | ND ND | Inf
ND | ND ND | Inf | Eff | | 2 | ND 120.0 | ND | 3 | ND | 4 | ND | Average | ND | JAN | | FEB | | MAR | | APR | | AL
MAY | DRIN AND | | (ng/L) 20 | 08
JUL | | AUG | | SEP | | ОСТ | | NOV | | DEC | | Week | Inf | JAN
Eff | Inf | Eff | Inf | MAK
Eff | Inf | Eff | Inf | MAY
Eff | Inf | JUN
Eff | Inf | Eff | Inf | Eff | Inf | SEP
Eff | Inf | OCT
Eff | Inf | Eff | Inf | Eff | | 1 | ND TIII | EII | ND 1111 | EII | ND | ND | | 2 | ND | 3 | ND | 4 | ND | Average | ND | DRIN AND | | (ng/L) 20 | | | | | | | | | | | | | Week | Inf | JAN
Eff | Inf | FEB
Eff | Inf | MAR
Eff | Inf | APR
Eff | Inf | MAY
Eff | Inf | JUN
Eff | Inf | JUL
Eff | Inf | AUG
Eff | Inf | SEP
Eff | Inf | OCT
Eff | Inf | NOV
Eff | Inf | DEC
Eff | | 1 | ND | ND | ND | ND | TIII | EII | ND | ND | ND | ND | ND | ND ND | ND | ND ND | ND | ND ND | TIII | EII | ND | ND ND | ND | ND | ND | ND | | 2 | ND IND | IND | ND | 3 | ND | | ND | 4 | ND | Average | ND | ENDR] | N (ng/L) | 2004 | | | | | | | | | | | | |-----------------------------|----------------------------|--|--|--|--|--|--|---|--|--|---|--|--|--|---|--|---|---|---|---|--|---|---|---| | | | JAN | | FEB | | MAR | | APR | | MAY | | JUN | | JUL | | AUG | | SEP | | OCT | | NOV | | DEC | | Week | Inf | Eff | 1 | nd | nd | | | nd | 2 | nd | 4 | nd | nd
nd | nd | nd | nd | nd
nd | nd
nd | nd
nd | nd | nd
nd | nd
nd | nd | n.d | nd | nd
nd | nd | nd | nd
nd | nd
nd | nd | nd | nd
nd | nd
nd | nd | | | nd
nd | nd | nd
nd | nd
nd | nd
nd | nd | nd | nd | nd
nd | nd | nd | nd
nd | nd
nd | nd
nd | nd | nd
nd | nd
nd | nd | nd | nd
nd | nd
nd | nd | nd | nd
nd | | Avg | nu | | | | | | | | | | | | ENDR] | N (ng/L) | 2005 | | | | | | | | | | | | | | | JAN | | FEB | | MAR | | APR | | MAY | | JUN | | JUL | | AUG | | SEP | | OCT | | NOV | | DEC | | Week | Inf | Eff | 1 | | | ND | ND | ND | ND | ND | ND | | | ND | | ND | ND | | 2 | ND | 3 | ND | 4 | ND | Average | ND | | | | | | | | | | | | ENIDDI | [N (ng/L) | 2006 | | | | | | | | | | | | | | | JAN | | FEB | | MAR | | APR | | MAY | LINDIN | JUN | 2000 | JUL | | AUG | | SEP | | ОСТ | | NOV | | DEC | | Week | Inf | Eff | 1 | ND | 2 | ND | 3 | ND | 4 | ND | ND | ND | ND | | | ND | | ND | ND | ND | ND | ND | ND | | Average | ND | JAN | | FEB | | MAR | | APR | | MAY | ENDR | IN (ng/L)
JUN | 2007 | JUL | | AUG | | SEP | | ОСТ | | NOV | | DEC | | Week | Inf | Eff | 1 | ND | ND | ±1111 | | ND | ND | ND | ND | ND | ND | 2.111 | | ND | | | 2 | ND 93.0 | ND | 3 | ND | | | | | | | | | | | ND | ND | | 4 | ND | ND | ND | ND | ND | | | | | | | ND | | | Average | ND | ND | ND | | | ND | ND | ND | ND | ND | ND | ND
ND ND | ND | | | | | IND | ND | ND | ND | ND
ND | ND
ND | | | | | | | | | | | | | | | | ND
ND | | | | | NO | ND | | | | | ND | ND | ND
ND | ND
ND | ND
ND | ND | | | | 741 | No | | | ND | | ND | ND | ND
ND | ND
ND | ND
ND
IN (ng/L) | ND
ND | ND
ND | ND | ND | | Mode | Tof | JAN | | FEB | ND | ND
MAR | ND | ND
APR | ND
ND | ND
ND
MAY | ND
ND
ENDR | ND
ND
IN (ng/L)
JUN | ND
ND
2008 | ND
ND
JUL | ND
ND | ND
ND
AUG | ND
ND | ND
ND
SEP | ND
ND | ND
ND
OCT | ND
ND | ND
ND
NOV | ND
ND | ND
DEC | | Week | Inf | Eff | Inf | FEB
Eff | ND
Inf | ND
MAR
Eff | ND
Inf | ND
APR
Eff | ND | ND
ND | ND
ND
ENDRI | ND
ND
IN (ng/L)
JUN
Eff | ND
ND
2008
Inf | ND
ND
JUL
Eff | ND
ND | ND
ND
AUG
Eff | ND
ND | ND
ND
SEP
Eff | ND
ND | ND
ND
OCT
Eff | ND | ND
ND | ND
ND | ND
DEC
Eff | | 1 | ND | Eff
ND | Inf
ND | FEB
Eff
ND | ND
Inf
ND | MAR
Eff
ND | ND
Inf
ND | APR
Eff
ND | ND
ND | ND
ND
MAY
Eff | ND ND ENDRI | ND ND IN (ng/L) JUN Eff ND | ND
ND
2008
Inf
ND | ND
ND
JUL
Eff
ND | ND
ND
Inf
ND | ND
ND
AUG
Eff
ND | ND
ND
Inf
ND | ND
ND
SEP
Eff
ND | ND
ND
Inf
ND | ND
ND
OCT
Eff
ND | ND
ND
Inf | ND
ND
NOV
Eff | ND
ND
Inf
ND | ND DEC Eff ND | | 1 2 | ND
ND | Eff
ND
ND | Inf
ND
ND | FEB
Eff
ND
ND | Inf
ND
ND | MAR
Eff
ND
ND | Inf
ND
ND | APR
Eff
ND
ND | ND
ND
Inf | ND
ND
MAY
Eff | ND ND ENDRI | ND ND IN (ng/L) JUN Eff ND ND | ND
ND
2008
Inf
ND
ND | ND
ND
JUL
Eff
ND
ND | ND ND Inf ND ND | ND ND AUG Eff ND ND | ND
ND
Inf
ND
ND | ND
ND
SEP
Eff
ND
ND | ND
ND Inf ND ND | ND
ND
OCT
Eff
ND
ND | ND
ND
Inf | ND
ND
NOV
Eff | ND
ND
Inf
ND
ND | ND DEC Eff ND ND | | 1 | ND
ND
ND | Eff
ND
ND
ND | Inf
ND
ND
ND | FEB
Eff
ND
ND
ND | Inf
ND
ND
ND | MAR
Eff
ND
ND
ND | Inf
ND
ND
ND | APR
Eff
ND
ND
ND | ND ND Inf ND ND | ND ND MAY Eff ND ND | ND ND ENDRI | ND ND IN (ng/L) JUN Eff ND ND ND | ND ND 2008 Inf ND ND ND ND | ND ND JUL Eff ND ND ND | ND ND Inf ND ND ND ND | ND ND AUG Eff ND ND ND | ND ND Inf ND ND ND | ND ND SEP Eff ND ND ND | ND ND Inf ND ND ND ND | ND ND OCT Eff ND ND ND | ND ND Inf ND ND | ND
ND
NOV
Eff | ND ND Inf ND ND ND | ND DEC Eff ND ND ND | | 1
2
3
4 | ND
ND
ND
ND | Eff
ND
ND
ND
ND | Inf
ND
ND
ND | FEB
Eff
ND
ND
ND
ND | Inf
ND
ND
ND
ND | MAR
Eff
ND
ND
ND | Inf
ND
ND
ND | APR
Eff
ND
ND
ND | ND ND Inf ND ND ND ND | ND ND MAY Eff ND ND ND ND | ND ND ENDRI Inf ND ND ND ND ND | ND ND IN (ng/L) JUN Eff ND ND | ND ND 2008 Inf ND ND ND ND ND | ND ND JUL Eff ND ND ND ND ND | ND ND Inf ND ND ND ND ND ND | ND ND AUG Eff ND ND ND ND | ND ND Inf ND ND ND ND ND | ND ND SEP Eff ND ND ND ND ND | ND ND Inf ND ND ND ND ND | ND ND OCT Eff ND ND ND ND ND | ND ND Inf ND ND ND ND | ND NOV Eff ND ND ND ND ND | ND ND Inf ND ND ND ND ND | ND DEC Eff ND ND | | 1
2
3 | ND
ND
ND | Eff
ND
ND
ND | Inf
ND
ND
ND | FEB
Eff
ND
ND
ND | Inf
ND
ND
ND | MAR
Eff
ND
ND
ND | Inf
ND
ND
ND | APR
Eff
ND
ND
ND | ND ND Inf ND ND | ND ND MAY Eff ND ND | ND ND ENDRI | ND ND IN (ng/L) JUN Eff ND ND ND ND | ND ND 2008 Inf ND ND ND ND | ND ND JUL Eff ND ND ND | ND ND Inf ND ND ND ND | ND ND AUG Eff ND ND ND | ND ND Inf ND ND ND | ND ND SEP Eff ND ND ND | ND ND Inf ND ND ND ND | ND ND OCT Eff ND ND ND | ND ND Inf ND ND | ND
ND
NOV
Eff | ND ND Inf ND ND ND | DEC
Eff
ND
ND
ND | | 1
2
3
4 | ND
ND
ND
ND | Eff ND ND ND ND ND ND | Inf
ND
ND
ND | FEB
Eff
ND
ND
ND
ND | Inf
ND
ND
ND
ND | MAR
Eff
ND
ND
ND
ND
ND | Inf
ND
ND
ND | APR
Eff
ND
ND
ND
ND | ND ND Inf ND ND ND ND | MD MAY Eff ND ND ND ND ND | ND ND ENDRI Inf ND ND ND ND ND ND | ND ND IN (ng/L) JUN Eff ND ND ND ND ND IN (ng/L) | ND ND 2008 Inf ND ND ND ND ND ND | ND ND JUL Eff ND ND ND ND ND ND | ND ND Inf ND ND ND ND ND ND | AUG
Eff
ND
ND
ND
ND
ND | ND ND Inf ND ND ND ND ND | SEP
Eff
ND
ND
ND
ND
ND | ND ND Inf ND ND ND ND ND | ND ND OCT Eff ND ND ND ND ND ND ND | ND ND Inf ND ND ND ND | ND NOV Eff ND ND ND ND ND ND ND | ND ND Inf ND ND ND ND ND | ND DEC Eff ND ND ND ND ND ND | | 1
2
3
4
Average | ND
ND
ND
ND | Eff
ND
ND
ND
ND
ND | Inf
ND
ND
ND
ND
ND | FEB
Eff
ND
ND
ND
ND
ND | Inf
ND
ND
ND
ND
ND | MAR
Eff
ND
ND
ND
ND
ND
ND | Inf
ND
ND
ND
ND
ND | APR
Eff
ND
ND
ND
ND
ND | ND ND Inf ND ND ND ND ND ND | ND ND MAY Eff ND ND ND ND ND ND MAY | ND ND ENDRI Inf ND ND ND ND ND ND ND ND ENDRI | ND ND IN (ng/L) JUN Eff ND | ND ND 2008 Inf ND | ND ND JUL Eff ND | ND ND Inf ND ND ND ND ND ND ND ND | ND ND AUG Eff ND | ND ND Inf ND ND ND ND ND ND ND ND | ND ND SEP Eff ND | ND ND Inf ND ND ND ND ND ND ND ND | ND ND OCT Eff ND ND ND ND ND ND OCT | ND ND Inf ND ND ND ND ND ND | ND NOV Eff ND ND ND ND ND ND ND ND NOV | ND ND Inf ND ND ND ND ND ND ND ND | ND DEC Eff ND ND ND ND ND ND DEC | | 1
2
3
4
Average | ND
ND
ND
ND
ND | Eff ND ND ND ND ND D ND ND ND D D D D D D | Inf ND ND ND ND ND ND ND ND | FEB
Eff
ND
ND
ND
ND
ND
ND | Inf
ND
ND
ND
ND | MAR
Eff
ND
ND
ND
ND
ND | Inf ND ND ND ND ND Inf | APR Eff ND ND ND ND ND APR Eff | ND ND Inf ND ND ND ND ND ND ND Inf | ND ND MAY Eff ND ND ND ND ND MAY Eff | ND ND ENDRI Inf ND ND ND ND ND ND ND Inf Inf | ND ND IN (ng/L) JUN Eff ND ND ND ND IN (ng/L) JUN Eff | ND ND 2008 Inf ND ND ND ND ND ND ND Inf | ND JUL Eff ND ND ND ND ND ND JUL Eff | ND Inf ND ND Inf ND ND ND ND ND ND Inf | ND AUG Eff ND ND ND ND AUG AUG Eff | ND Inf ND ND Inf ND ND ND ND ND ND Inf | ND ND SEP Eff ND ND ND ND SEP Eff | ND ND Inf ND ND ND ND ND ND ND ND ND Inf | ND ND OCT Eff ND ND ND ND OCT OCT Eff | ND ND Inf | ND NOV Eff ND ND ND ND ND ND ND NOV Eff | ND ND Inf ND | ND DEC Eff ND ND ND ND ND DEC Eff | | 1
2
3
4
Average | ND
ND
ND
ND
ND | Eff ND | Inf ND ND ND ND ND ND ND | FEB
Eff
ND
ND
ND
ND
ND | Inf ND ND ND ND ND ND ND ND | MAR Eff ND | Inf ND | APR Eff ND | ND ND Inf ND | MAY Eff ND | ND ND ENDRI Inf ND ND ND ND ND ND ND ND ENDRI | ND ND IN (ng/L) JUN Eff ND | ND ND 2008 Inf ND ND ND ND ND ND ND ND ND 101 101 101 101 101 101 101 101 101 10 | ND ND JUL Eff ND | ND ND Inf ND | AUG EFF ND ND ND ND ND ND ND ND AUG EFF ND | ND ND Inf ND | ND ND SEP Eff ND | ND ND Inf ND | ND ND OCT Eff ND ND ND ND ND OCT Eff ND | ND ND Inf ND | ND NOV Eff ND | ND ND Inf ND | ND DEC Eff ND ND ND ND ND DEC Eff ND | | 1 2 3 4 Average | ND
ND
ND
ND
ND | Eff ND | Inf ND | FEB Eff ND | Inf ND | MAR Eff ND | Inf ND | APR EFF ND | ND ND Inf ND | MAY EFF ND ND MAY EFF ND ND ND MAY EFF ND ND ND MAY EFF ND | ND ND ENDRI Inf ND ND ND ND ND ND ND Inf Inf | ND ND IN (ng/L) JUN Eff ND ND ND ND IN (ng/L) JUN Eff | ND ND ND 2008 Inf ND | ND ND JUL Eff ND | ND Inf ND | ND AUG Eff ND ND ND ND ND ND ND ND ND | ND ND Inf ND | ND ND SEP Eff ND | ND ND Inf ND | ND ND OCT Eff ND | ND ND Inf ND | ND NOV Eff ND | ND ND Inf ND | ND DEC Eff ND | | 1
2
3
4
Average | ND ND ND ND ND ND ND ND ND | Eff ND | Inf ND | FEB Eff ND | Inf ND | MAR Eff ND | Inf ND | APR Eff ND ND ND APR Eff ND | ND ND Inf ND | MAY EFF ND | ND ND ENDRI Inf ND ND ND ND ND Inf ND ND ND ND ND ND ND ND ND Inf | ND N | ND ND ND 2008 Inf ND | ND ND JUL Eff ND | ND ND ND Inf ND | AUG Eff ND | ND ND ND Inf ND | ND ND ND SEP Eff ND | ND ND ND Inf ND | ND ND OCT Eff ND | ND ND Inf ND | ND NOV Eff ND ND ND ND ND ND NOV Eff ND NOV Eff ND | ND ND ND Inf ND | DEC Eff ND ND ND DEC Eff ND | | 1 2 3 4 Average | ND
ND
ND
ND
ND | Eff ND | Inf ND | FEB Eff ND | Inf ND | MAR Eff ND | Inf ND | APR EFF ND | ND ND Inf ND | MAY EFF ND ND MAY EFF ND ND ND MAY EFF ND ND ND MAY EFF ND | ND ND ENDRI Inf ND ND ND ND ND ND ND Inf Inf | ND ND IN (ng/L) JUN Eff ND ND ND ND IN (ng/L) JUN Eff | ND ND ND 2008 Inf ND | ND ND JUL Eff ND | ND Inf ND | ND AUG Eff ND ND ND ND ND ND ND ND ND | ND ND Inf ND | ND ND SEP Eff ND | ND ND Inf ND | ND ND OCT Eff ND | ND ND Inf ND | ND NOV Eff ND | ND ND Inf ND | ND DEC Eff ND | | | | | | | | | | | | HCH-H | IEXACHLORO | CYCLOHEXA | NES (ng/L) | 2004 | | | | | | | | | | | |------------|----------|------------|----------|----------------|----------------|----------------|-------------------|----------------|----------------|----------------|-------------|------------|-----------------------------------|----------------|-----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|------------| | | | JAN | | FEB | | MAR | | APR | | MAY | | JUN | | JUL | | AUG | | SEP | | OCT | | NOV | | DEC | | Week | Inf | Eff | 1 | nd | nd | | | 16 | nd | 16 | nd | 19 | nd | nd | nd | 14 | nd | 31 | nd | 16 | 11 | 29 | ND | 28 | ND | 24 | 16.5 | | 2 | 14
nd | nd
nd | nd
11 | nd | 40
15 | nd
nd | nd
33 | nd
12 | 11
10 | nd
nd | 24.5
29 | nd | 26 | nd | 44
20 | nd
nd | 16
12 | 12
nd | 41
11 | ND
ND | 24
34 | ND
ND | 20
26 | ND | | 4 | nd
nd | nd | nd | nd
nd | 34 | nd | nd | nd | 58 | nd | 29 | nd
nd | 88 | 67 | nd | nd | 13 | nd | ND | ND | 42 | ND
ND | 25 | ND
ND | | Avg | 6.8 | nd | 3.7 | nd | 26.3 | nd | 12.3 | 3 | 24.5 | nd | 18.9 | nd | 42.7 | 22.3 | 23.8 | nd | 14.3 | 5.8 | 20.3 | ND | 32 | ND | 23.8 | 4.1 | | 748 | 0.0 | iiu | 3.7 | iiu | 20.5 | 110 | 12.5 | , | 24.3 | iiu | 10.5 | iiu | 72.7 | 22.5 | 23.0 | iiu | 14.5 | 3.0 | 20.5 | NO | 32 | ND | 23.0 | 7.1 | | | | | | | | | | | | | IEXACHLORO | CYCLOHEXA | NES (ng/L) | | | | | | | | | | | | | | | JAN | | FEB | | MAR | | APR | | MAY | | JUN | | JUL | | AUG | | SEP | | OCT | | NOV | | DEC | | Week | Inf | Eff | 1
2 | 13 | ND | ND
ND | ND
ND | 15
ND | ND
ND | 36
43 | 15 | 33 | 17 | 24
22 | ND
11.5 | 40
29.7 | 41
13.5 | 25
35 | 13.5
20 | 30
32 | ND
ND | 31
30 | ND
ND | ND | ND | ND
ND | 10.5
ND | | 3 | 21 | ND
ND | ND
ND | 30.5 | 12 | ND
ND | 30.3 | 16
13.8 | 25 | ND | 15 | ND | 27.3 | ND | 35
44 | 72.5 | 14 | ND
ND | 29 | ND
ND | ND
ND | ND
ND | ND
ND | ND
ND | | 4 | 28 | ND | ND | ND | ND | ND | 39 | ND | 29.3 | 16 | 20 | 13 | 17.3 | 20.8 | 0 | 23 | 11 | ND | 29 | 20 | 15 | ND | 28 | ND | | Average | 20.7 | ND | ND | 7.6 | 6.8 | ND | 37.1 | 11.2 | 29.1 | 11 | 20.3 | 6.1 | 28.6 | 18.8 | 26 | 32.3 | 21.8 | ND | 29.8 | 5 | 5 | ND | 7 | 2.6 | | 711 C. UBC | 2017 | | | 7.10 | 0.0 | | 37.12 | | 2312 | | 2015 | 0.1 | 2010 | 20.0 | 20 | 32.3 | 22.0 | | 2510 | | , | ND | • | 2.0 | | | | | | | | | | | | | IEXACHLORO | | NES (ng/L) | | | | | | | | | | | | | | _ | JAN | _ | FEB | _ | MAR | _ | APR | _ | MAY | _ | JUN | _ | JUL | _ | AUG | _ | SEP | _ | OCT | _ | NOV | _ | DEC | | Week | Inf | Eff | 1 | ND | ND | 30 | 14 | ND | ND | 12 | ND | ND | ND | 11.0 | ND | 30 | 12.5 | 24.0 | ND | ND | ND | ND | ND | ND | 11 | ND | ND | | 2 | 49 | 17
ND | ND 15.0 | ND | 30 | ND | 14.0 | ND | 3 | 18
14 | ND
ND | ND
17 | ND
ND | ND | ND | ND
ND | ND
ND | ND
21 | ND
ND | 14.0
0.0 | ND
ND | 28
ND | ND
ND | 22.0
21.0 | ND
ND | ND | ND | ND
ND | ND
ND | ND
ND | ND
ND | ND
ND |
ND
ND | | Average | 20.3 | 4.3 | 11.8 | 3.5 | ND | ND | 3 | ND | 5.3 | ND | 10.0 | ND | 22 | 3.1 | 20.3 | ND | ND | ND | ND | ND | ND | 2.8 | ND | ND | | | | | | | | | - | IEXACHLORO | | NES (ng/L) | | | | | | | | | | | | | | | JAN | | FEB | | MAR | | APR | | MAY | | JUN | | JUL | | AUG | | SEP | | OCT | | NOV | | DEC | | Week | Inf | Eff | 1
2 | 16
17 | ND
ND | ND | ND | ND | ND | ND
ND | ND
ND | ND
10 | ND
ND | ND | ND | ND
426.0 | ND
ND ND | ND | | 3 | 15 | ND | ND | ND | ND | ND | 12.0 | ND | ND | ND | ND | ND | 420.0
ND | 14.0 | ND 7.0 | ND | | 4 | 0 | ND | ND | ND | ND | ND | 7.0 | ND | Average | 12.0 | ND | ND | ND | ND | ND | 4.8 | ND | 2.5 | ND | ND | ND | ND | 3.5 | ND 2.3 | ND | | Ü | 7.651 | | FFD | | MAD | | 400 | | | IEXACHLORO | | NES (ng/L) | | | 4116 | | CED | | OCT | | NOV | | DEC | | Week | Inf | JAN
Eff | Inf | FEB
Eff | Inf | MAR
Eff | Inf | APR
Eff | Inf | MAY
Eff | Inf | JUN
Eff | Inf | JUL
Eff | Inf | AUG
Eff | Inf | SEP
Eff | Inf | OCT
Eff | Inf | NOV
Eff | Inf | DEC
Eff | | 1 | ND TIII | EII | ND TIII | EII | ND | ND | | 2 | ND | ND | ND | 10.5 | ND | ND | ND | ND | 10 | ND | 3 | ND | 4 | ND | ND | ND | ND | ND | ND | 6.5 | ND | Average | ND | ND | ND | 2.6 | ND | ND | 1.6 | ND | 2.5 | ND | | | | | | | | | | | | | | (/ / / / / / / / / / / / / / / / | | | | | | | | | | | | | | | JAN | | FEB | | MAR | | APR | | HCH-H
MAY | IEXACHLORO | JUN JUN | NES (Ng/L) |) 2009
JUL | | AUG | | SEP | | ОСТ | | NOV | | DEC | | Week | Inf | Eff | 1 | ND | ND | ND | ND | | | 5 | ND | | ND | ND | ND | ND | ND | ND | | 2 | ND | ND | ND | ND | ND | ND | 0 | ND | ND | ND | | | ND | ND | 5.5 | ND | ND | | 3 | ND | ND | ND | ND | ND | ND | 0.0 | ND | ND | ND | | | ND | | ND
ND | ND
ND | ND
ND | ND
ND
ND | ND
ND
ND | ND
ND
ND | 0.0
0.0
1.3 | ND
ND
ND | ND
ND
ND | ND
ND
ND | ND
ND | ND
ND | ND
ND
ND | ND
ND
ND | ND
ND
1.4 | ND
ND
ND ND
ND | | | | | | | | | | | | CHLORDA | NE & RELA | TED COMPO | UNDS (ng/ | | | | | | | | | | | | |-------------------------------------|---|---|--|--|--|--|--|--|--|---|--|--|--|---|--|---|--|---|---|--|--|--|---|---| | | | JAN | | FEB | | MAR | | APR | | MAY | | JUN | | JUL | | AUG | | SEP | | OCT | | NOV | | DEC | | Week | Inf | Eff | 1 2 | nd
nd | nd
nd | nd | nd | nd
nd | nd | nd
nd | nd | nd
nd | nd
nd | nd
nd | nd
nd | nd
nd | nd | nd | nd | 45 | nd
nd | nd | nd | nd
nd | nd | nd | nd
nd | | 3 | nd
nd | nd | nd
nd nd | nd
nd | nd
nd | nd
nd | nd
nd | nd
nd | nd
nd | | 4 | nd 131 | 139 | nd | Avg | nd 43.7 | 46.2 | nd | nd | 11.3 | nd | S | NE & RELA | | UNDS (ng/ | | | | | | | | | | | | | | | JAN | | FEB | | MAR | | APR | | MAY | | JUN | | JUL | | AUG | | SEP | | OCT | | NOV | | DEC | | Week | Inf | Eff | 1 2 | ND | ND | ND
ND | ND
ND | ND
ND | ND
ND | ND
63 | ND
ND | ND | ND | ND
ND ND | ND | ND
ND | ND
ND | | 3 | ND | ND
ND | ND
ND | ND | ND | ND
ND | ND | ND
ND | ND | ND
ND 178 | ND
ND | | 4 | ND | Average | ND | ND | ND | ND | ND | ND | 15.8 | ND 44.5 | ND | | 6 - | NE & RELA | | UNDS (ng/ | | | | | | | | | | | | | No ala | T C | JAN | T - C | FEB | T - C | MAR | T C | APR | T C | MAY | T C | JUN | T C | JUL | T C | AUG | T C | SEP | T - C | OCT | T C | NOV | T - C | DEC | | Week | Inf | Eff | 1 | ND
ND ND | ND
ND | ND | ND | ND
ND | 2 | ND | ND
ND | ND | ND
ND | 4 | ND | Average | ND | 6 - | NE & RELA | | UNDS (ng/ | | | | | | | | | | | | | Marala. | T C | JAN
Eff | Inf | FEB | Inf | MAR | | APR | | MAY | T C | JUN | T C | JUL | Inf | AUG
Eff | | SEP | | OCT | | NOV | | DEC | | Week | Inf | ETT | | | | | | | | | | | | | | | | | | | T C | | | | | | ND | ND | 1111 | Eff | | Eff | Inf | Eff | Inf | Eff | Inf | Eff | Inf | Eff | | | Inf | Eff | Inf | Eff | Inf | Eff | Inf | Eff | | 1 | ND
ND | ND
ND | | | ND | ND | ND | ND | ND | ND | | | ND | ND | ND | ND | ND | ND | 58.0 | ND | ND | ND | | | | 2 | ND | ND | ND | ND | ND
ND | ND
ND | ND
ND | ND
ND | ND
ND | ND
ND | ND | ND | ND
120.0 | ND
ND | ND
ND | ND
ND | ND
ND | ND
ND | 58.0
ND | ND
ND | ND
ND | ND
ND | ND | ND | | | ND
ND | ND
ND | ND
ND | ND
ND | ND | ND
ND
ND | ND
ND
ND | ND
ND
ND | ND
ND
ND | ND
ND
ND | ND
ND | | ND
120.0
ND | ND
ND
ND | ND
ND
ND | ND
ND
ND | ND
ND
ND | ND | 58.0 | ND
ND
ND | ND
ND
ND | ND
ND
ND | ND
ND | ND
ND | | 2 3 | ND | ND | ND | ND | ND
ND
ND | ND
ND | ND
ND | ND
ND | ND
ND | ND
ND | ND | ND
ND | ND
120.0 | ND
ND | ND
ND | ND
ND | ND
ND | ND
ND
ND | 58.0
ND
ND | ND
ND | ND
ND | ND
ND | ND | ND | | 2
3
4 | ND
ND
ND | ND
ND
ND | ND
ND
ND | ND
ND
ND | ND
ND
ND
ND | ND
ND
ND
ND | ND
ND
ND
ND | ND
ND
ND
ND | ND
ND
ND
ND | ND
ND
ND
ND | ND
ND
ND | ND
ND
ND | ND
120.0
ND
ND
ND | ND
ND
ND
ND | ND
ND
ND
ND | ND
ND
ND
ND | ND
ND
ND
ND | ND
ND
ND
ND | 58.0
ND
ND
ND | ND
ND
ND
ND | ND
ND
ND
ND | ND
ND
ND
ND | ND
ND
ND | ND
ND
ND | | 2
3
4 | ND
ND
ND | ND
ND
ND | ND
ND
ND | ND
ND
ND | ND
ND
ND
ND | ND
ND
ND
ND | ND
ND
ND
ND | ND
ND
ND
ND | ND
ND
ND
ND | ND
ND
ND
ND
ND | ND
ND
ND | ND
ND
ND
ND | ND
120.0
ND
ND | ND
ND
ND
ND
ND | ND
ND
ND
ND | ND
ND
ND
ND | ND
ND
ND
ND | ND
ND
ND
ND | 58.0
ND
ND
ND | ND
ND
ND
ND | ND
ND
ND
ND | ND
ND
ND
ND | ND
ND
ND | ND
ND
ND | | 2
3
4
Average | ND
ND
ND | ND
ND
ND
ND | ND
ND
ND | ND
ND
ND
ND | ND
ND
ND
ND | ND
ND
ND
ND
ND | ND
ND
ND
ND | ND
ND
ND
ND
ND | ND
ND
ND
ND |
ND
ND
ND
ND
ND
CHLORDA | ND
ND
ND
ND | ND
ND
ND
ND
TED COMPO | ND
120.0
ND
ND
ND | ND
ND
ND
ND
ND
ND | ND
ND
ND
ND | ND
ND
ND
ND
ND | ND
ND
ND
ND
ND | ND
ND
ND
ND
ND | 58.0
ND
ND
ND
14.5 | ND
ND
ND
ND
ND | ND
ND
ND
ND | ND
ND
ND
ND
ND | ND
ND
ND
ND | ND
ND
ND
ND | | 2
3
4
Average | ND
ND
ND
ND | ND
ND
ND
ND | ND
ND
ND
ND | ND
ND
ND
ND | ND
ND
ND
ND
ND | ND
ND
ND
ND
ND | ND
ND
ND
ND | ND
ND
ND
ND
ND | ND
ND
ND
ND | ND
ND
ND
ND
ND | ND
ND
ND
ND
NE & RELA | ND
ND
ND
TED COMPO
JUN
Eff | ND
120.0
ND
ND
ND
UNDS (ng/ | ND
ND
ND
ND
ND
L) 2008
JUL
Eff | ND
ND
ND
ND | ND
ND
ND
ND
ND | ND
ND
ND
ND
ND | ND
ND
ND
ND
SEP
Eff | 58.0
ND
ND
ND
14.5 | ND
ND
ND
ND
ND | ND
ND
ND
ND | ND
ND
ND
ND | ND
ND
ND | ND
ND
ND
ND | | 2
3
4
Average | ND
ND
ND
ND | ND ND ND JAN Eff | ND
ND
ND
ND | ND
ND
ND
ND | ND
ND
ND
ND
ND | ND
ND
ND
ND
ND
MAR
Eff | ND
ND
ND
ND
ND | ND
ND
ND
ND
ND | ND
ND
ND
ND
ND | ND ND ND ND CHLORDA MAY Eff | ND
ND
ND
ND
NE & RELA
Inf | ND ND ND TED COMPO | ND 120.0 ND ND ND ND UNDS (ng/ | ND
ND
ND
ND
ND
L) 2008
JUL
Eff | ND
ND
ND
ND | ND
ND
ND
ND
ND | ND
ND
ND
ND
ND | ND
ND
ND
ND
SEP
Eff | 58.0
ND
ND
ND
14.5 | ND ND ND ND OCT Eff ND | ND
ND
ND
ND | ND
ND
ND
ND
ND | ND
ND
ND
ND | ND
ND
ND
ND
DEC
Eff | | 2
3
4
Average | ND
ND
ND
ND | ND | ND
ND
ND
ND | ND
ND
ND
ND
ND | ND
ND
ND
ND
ND
ND | ND
ND
ND
ND
ND
ND | ND
ND
ND
ND
ND | ND | ND
ND
ND
ND
ND | ND ND ND ND ND CHLORDA MAY Eff | ND ND ND ND NE & RELA Inf ND ND | ND ND ND TED COMPO JUN Eff ND ND | ND 120.0 ND ND ND ND UNDS (ng/ | ND ND ND ND ND L) 2008 JUL Eff ND ND | ND ND ND ND ND ND ND ND | ND | ND
ND
ND
ND
ND | ND ND ND ND ND ND ND ND ND | 58.0
ND
ND
ND
14.5 | ND ND ND ND OCT Eff ND ND | ND
ND
ND
ND
ND | ND ND ND ND ND NO ND NOV Eff | ND
ND
ND
ND | ND ND ND ND DEC Eff ND ND | | 2
3
4
Average | ND
ND
ND
ND | ND ND ND JAN Eff | ND
ND
ND
ND | ND
ND
ND
ND | ND
ND
ND
ND
ND | ND
ND
ND
ND
ND
MAR
Eff | ND
ND
ND
ND
ND | ND
ND
ND
ND
ND | ND
ND
ND
ND
ND | ND ND ND ND CHLORDA MAY Eff | ND
ND
ND
ND
NE & RELA
Inf | ND ND ND TED COMPO | ND 120.0 ND ND ND ND UNDS (ng/ | ND
ND
ND
ND
ND
L) 2008
JUL
Eff | ND
ND
ND
ND | ND
ND
ND
ND
ND | ND
ND
ND
ND
ND | ND
ND
ND
ND
SEP
Eff | 58.0
ND
ND
ND
14.5 | ND ND ND ND OCT Eff ND | ND
ND
ND
ND | ND
ND
ND
ND
ND | ND
ND
ND
ND | ND ND ND DEC Eff ND ND ND ND | | 2 3 4 Average Week 1 2 3 | ND | ND | ND ND ND ND ND Inf ND ND 15.0 | ND
ND
ND
ND
FEB
Eff
ND
ND | ND N | ND ND ND ND ND ND ND ND ND MAR Eff ND ND ND | ND N | ND N | ND
ND
ND
ND
ND | ND ND ND ND ND CHLORDA MAY Eff ND ND | ND ND ND ND NE & RELA Inf ND ND ND | ND ND ND TED COMPO JUN Eff ND ND ND | ND 120.0 ND ND ND ND UNDS (ng/ Inf ND ND ND ND ND ND ND ND | ND ND ND ND ND L) 2008 JUL Eff ND ND ND | ND N | ND N | ND ND ND ND ND ND ND ND ND | ND
ND
ND
ND
ND
SEP
Eff
ND
ND | 58.0
ND
ND
ND
14.5 | ND N | ND
ND
ND
ND
ND
ND | ND
ND
ND
ND
ND
NOV
Eff | ND
ND
ND
ND | ND ND ND ND DEC Eff ND ND | | 2 3 4 Average | ND
ND
ND
ND | ND ND ND JAN Eff ND ND ND ND | ND ND ND ND ND Inf ND ND ND ND | ND N | ND N | ND ND ND ND ND ND ND ND ND MAR Eff ND ND ND ND | ND N | ND N | ND N | ND ND ND ND ND CHLORDA MAY Eff ND ND ND ND ND ND ND | ND N | ND ND ND TED COMPC JUN Eff ND ND ND ND ND ND ND ND ND | ND 120.0 ND ND ND UNDS (ng/ Inf ND | ND ND ND ND ND L) 2008 JUL Eff ND | ND N | ND N | ND N | ND N | 58.0
ND
ND
ND
14.5
Inf
ND
ND | ND N | ND ND ND ND ND ND ND ND ND | ND ND ND ND ND NO ND NOV Eff ND ND ND | ND | ND ND ND DEC Eff ND ND ND ND ND ND ND ND ND | | 2 3 4 Average | ND
ND
ND
ND | ND ND ND ND ND ND ND ND ND | ND ND ND ND ND Inf ND ND ND ND | ND N ND ND TED COMPC JUN Eff ND ND ND ND ND ND ND TED COMPC | ND 120.0 ND ND ND VUNDS (ng/ Inf ND | ND N | 58.0
ND
ND
ND
14.5
Inf
ND
ND | ND N | ND ND ND ND ND ND ND ND ND | ND N | ND | ND ND ND DEC Eff ND | | 2 3 4 Average Week 1 2 3 4 Average | ND ND ND Inf ND | ND N | ND
ND
ND
ND
ND
15.0
ND
3.8 | ND N | ND N | ND N | ND N | ND ND ND ND ND ND ND APR Eff ND | ND N | ND ND ND ND ND ND ND ND CHLORDA MAY Eff ND CHLORDA MAY | ND N | ND ND ND ND TED COMPC JUN Eff ND TED COMPC JUN | ND 120.0 ND | ND N | ND N | ND ND ND ND ND ND ND ND ND AUG Eff ND | ND N | ND ND ND ND ND ND ND SEP Eff ND | S8.0
ND
ND
ND
14.5 | ND N | ND N | ND N | ND
ND
ND
ND
Inf
ND
ND
ND
ND
ND | ND N | | 2 3 4 Average | ND
ND
ND
ND | ND ND ND ND ND ND ND ND ND | ND ND ND ND ND Inf ND ND ND ND | ND N ND ND TED COMPC JUN Eff ND ND ND ND ND ND ND TED COMPC | ND 120.0 ND ND ND UNDS (ng/ Inf ND | ND N | 58.0
ND
ND
ND
14.5
Inf
ND
ND
ND | ND N | ND ND ND ND ND ND ND ND ND | ND N | ND | ND ND ND DEC Eff ND | | 2 3 4 Average Week 1 2 3 4 Average | ND N | ND ND ND JAN Eff ND | ND 15.00 ND ND 1 1.00 N | ND ND ND ND ND ND ND ND APR Eff ND | ND N | ND ND ND ND ND ND ND ND CHLORDA MAY Eff ND ND ND CHLORDA MAY Eff | ND ND ND NE & RELA Inf ND | ND ND ND ND TED COMPC JUN Eff ND ND ND ND ND TED COMPC JUN ETD TED COMPC JUN Eff | ND 120.0 ND ND ND ND UNDS (ng/ Inf ND Inf | ND N | ND N | ND ND ND ND ND ND ND ND AUG Eff ND | ND N | ND ND ND ND ND ND ND SEP Eff ND | S8.0
ND
ND
ND
14.5 | ND N | | 2 3 4 Average Week 1 2 3 4 Average | ND N | ND N | ND ND ND ND ND ND ND Inf ND ND 15.0 ND 3.8 Inf ND | ND N | ND ND ND ND ND ND ND ND CHLORDA MAY Eff ND ND ND CHLORDA MAY Eff ND | ND ND ND NE & RELA Inf ND | ND ND ND ND TED COMPC JUN Eff ND ND ND ND ND TED COMPC JUN ETD TED COMPC JUN Eff | ND 120.0 ND ND ND ND ND ND ND UNDS (ng/ Inf ND ND ND ND ND ND ND ND UNDS (ng/ Inf ND | ND N | S8.0
ND
ND
14.5
Inf
ND
ND
ND
ND
ND
ND
ND
ND
ND | ND N | | 2 3 4 Average Week 1 2 3 4 Average | ND N | ND ND ND SAN EFF ND ND SAN EFF ND | ND N ND ND NE & RELA Inf ND | ND ND ND ND TED COMPC JUN Eff ND ND ND ND ND TED COMPC JUN ETD TED COMPC JUN Eff | ND 120.0 ND ND ND ND UNDS (ng/ Inf ND UNDS (ng/ | ND N | S8.0
ND
ND
ND
14.5
Inf
ND
ND
ND
ND
ND | ND N | | | | | | | | | | | | PCBs-P0 | LYCHLORIN | ATED BIPH | ENYLS (ng/ | 'L) 2004 | | | | | | | | | | | |-----------|-----------|-----------|----------|----------|-----------|-----------|-----------|-----------|-----------|-----------|-------------|-----------|------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------| | | _ | JAN | _ | FEB | _ | MAR | _ | APR | _ | MAY | _ | JUN | _ | JUL | _ | AUG | _ | SEP | _ | ОСТ | _ | NOV | _ | DEC | | Week
1 | Inf
nd | Eff
nd | Inf | Eff | Inf
nd | Eff
nd | 2 | nd | 3 | nd | | nd | 4 | nd | Avg | nd | | | | | | | | | | | PCRs-PO | I YCHI ORTN | ATED RIPH | ENYLS (ng/ | (1) 2005 | | | | | | | | | | | | | | JAN | | FEB | | MAR | | APR | | MAY | | JUN | | JUL | | AUG | | SEP | | OCT | | NOV | | DEC | | Week | Inf | Eff | 1 | | | ND | ND | ND | ND | ND | | | | ND | | ND | ND | | 2 | ND | 3 | ND | 4 | ND | Average | ND | 0 - | PCBs-P0 | LYCHLORIN | ATED BIPH | ENYLS (ng/ | 'L) 2006 | | | | | | | | | | | | | | JAN | | FEB | | MAR | | APR | | MAY | | JUN | | JUL | | AUG | | SEP | | OCT | | NOV | | DEC | | Week | Inf | Eff | 1 | ND | 2 | ND | 3 | ND | 4 | ND | ND | ND | ND | | | ND | | ND | ND | ND | ND | ND | ND | | Average | ND | LYCHLORIN | | ENYLS (ng/ | | | | | | | | | | | | | | | JAN | | FEB | | MAR | | APR | | MAY | | JUN | | JUL | | AUG | | SEP | | OCT | | NOV | | DEC | | Week | Inf | Eff | 1 | ND | ND | | | ND | ND | ND | ND | ND | ND | | | ND | | | 2 | ND | 3 | ND
ND | | | | | | | | | ND
ND | ND | ND
ND | ND
ND | ND
ND | ND
ND | ND
ND | | ND
ND | ND
ND | | | | | | | ND
ND | | Average | ND | | | | | | | | | | | PCBs-PO | LYCHLORIN | ATED BIPH | ENYLS (ng/ | L) 2008 | | | | | | | | | | | | | | JAN | | FEB | | MAR | | APR | | MAY | | JUN | | JUL | | AUG | | SEP | | ОСТ | | NOV | | DEC | | Week | Inf | Eff | 1 | ND | | ND | ND | ND | ND ND | | | ND | ND | | 2 | ND | 3 | ND | 4 | ND | Average | ND | • | PCBs-P0 | LYCHLORIN | ATED BIPH | ENYLS (ng/ | 'L) 2009 | | | | | | | | | | | | | | JAN | | FEB | | MAR | | APR | | MAY | | JUN | | JUL | | AUG | | SEP | | OCT | | NOV | | DEC | | Week | Inf | Eff | 1 | ND | ND | ND | ND | | | ND | | ND | ND | ND | ND | ND | ND | | 2 | ND | | ND | 3 | ND | | ND | 4 | ND | Average | ND | | | | | | | | | | | DI | OT AND DER | IVATIVES | (ng/L) 20 | 04 | | | | | | | | | | | |---------|-----------|----------|----------|----------|-----------|----------|-------------|-----------|-------------|-----------|------------|-----------------|-------------|-----------|----------|-----------|------------|----------|----------|-----------|----------
----------|-----------|------------| | | _ | JAN | _ | FEB | _ | MAR | | APR | | MAY | | JUN | _ | JUL | | AUG | _ | SEP | _ | OCT | _ | NOV | | DEC | | Week | Inf | Eff | 1 | nd | nd | m.d | n d | nd | nd | nd | nd | 24 | nd 30 | nd | | 2 3 | nd
nd nd | nd | nd
nd nd
20 | nd
nd | | 4 | nd 24 | nd | | Avg | nd 6 | nd 18.5 | nd | | Ave | 110 | iiu | iiu | 110 | 110 | 110 | IIu | 110 | Ü | 110 | IIu | iiu | 110 | iiu | 110 | 110 | iiu | iiu | iiu | iiu | IIu | IIu | 10.5 | nu . | | | | | | | | | | | | | OT AND DER | | (ng/L) 20 | | | | | | | | | | | | | | | JAN | | FEB | | MAR | | APR | | MAY | | JUN | | JUL | | AUG | | SEP | | OCT | | NOV | | DEC | | Week | Inf | Eff | 1 | ND | ND | ND
ND | ND
ND | ND
ND | ND
ND | ND | ND | ND | ND | ND
ND ND | ND
ND | ND | ND | ND
ND | ND | | 2 3 | ND
ND ND
23 | ND
ND | | 4 | ND | Average | ND 5.8 | ND | OT AND DER | | (ng/L) 20 | | | | | | | | | | | | | HI- | T C | JAN | T C | FEB | T C | MAR | T C | APR | T - C | MAY | T C | JUN | T C | JUL | T - C | AUG | T - C | SEP | T - C | OCT | T C | NOV | T C | DEC
Eff | | Week | Inf | Eff | Inf | Eff | Inf | Eff | Inf | Eff | Inf
ND | Eff
ND | Inf
ND | Eff | Inf | Eff | Inf | Eff
ND | Inf | Eff | Inf | Eff
ND | Inf | Eff | Inf
ND | | | 1 2 | ND
ND ND
27.0 | ND
ND | 3 | ND | ND
ND 26 | ND
ND ND | ND | ND | | 4 | ND | Average | ND 13.3 | ND | 6 - | OT AND DER | | (ng/L) 20 | | | | | | | | | | | | | | | JAN | | FEB | | MAR | | APR | | MAY | | JUN | | JUL | | AUG | | SEP | | OCT | | NOV | | DEC | | Week | Inf
ND | Eff | Inf | Eff | Inf
ND | Eff | Inf | Eff
ND | Inf
24.0 | Eff | Inf | Eff | Inf
15.0 | Eff
ND | Inf | Eff
ND | Inf | Eff | Inf | Eff | Inf | Eff | Inf | Eff | | 1 2 | ND
ND | ND
ND | ND | ND | ND
ND | ND
ND | 8.0
16.0 | ND
ND | 14.0 | 8.0
ND | 17.0 | ND | 230.0 | ND
ND | ND
ND | ND
ND | 18.0
ND | ND
ND | ND
ND | ND
ND | ND
ND | ND
ND | ND | ND | | 3 | ND | ND | ND | ND | ND | ND | 0.0 | ND | 15.0 | ND | 8.0 | ND | ND | ND | ND | ND | 11.0 | ND | 4 | ND | ND | ND | ND | ND | ND | 22.0 | 4 | 16.0 | ND | 12.0 | ND | ND | ND | ND | ND | 16.0 | ND | Average | ND | ND | ND | ND | ND | ND | 11.5 | 1 | 17.3 | 2.0 | 12.3 | ND | 5.0 | ND | ND | ND | 11.3 | ND | JAN | | FEB | | MAR | | APR | | MAY | OT AND DER | JUN | (ng/L) 20 | 08
JUL | | AUG | | SEP | | ОСТ | | NOV | | DEC | | Week | Inf | Eff | 1 | ND | ND | 13 | ND | ND | ND | ND | ND | 2111 | | 22.0 | ND | ND | ND | 5.0 | 4.0 | 15.0 | ND | ND | ND | 2111 | | ND | 4.5 | | 2 | ND | ND | ND | ND | ND | 6 | ND | 3 | ND | ND | 22 | ND | ND | ND | ND | ND | 7.0 | ND 13.0 | ND | ND | ND | ND | ND | | 4 | ND 8.0 | ND | ND | ND | 11.0 | ND | 37.0 | ND | Average | ND | ND | 8.8 | ND | ND | 1.5 | ND | ND | 5 | ND | 5.5 | ND | 2.8 | ND | 10.5 | 1 | 3.8 | ND | 3.3 | ND | ND | ND | ND | 1.1 | JAN | | FEB | | MAR | | APR | | DI
May | OT AND DER | IVATIVES
JUN | (ng/L) 20 | 09
JUL | | AUG | | SEP | | ОСТ | | NOV | | DEC | | Week | Inf | Eff | 1 | ND | ND | 27 | 5 | ±111 | E11 | 6.0 | ND | 19.0 | ND 2111 | E11 | 5.0 | ND | ND | ND | ND | 4.5 | | 2 | ND 28.0 | ND | | | ND | ND | ND | ND | ND | ND | 5.0 | ND | ND | ND | ND | ND ND | | 3 | ND 8.6 | ND | | | ND | 4 | ND | ND | 26 | ND | ND | ND | 18.0 | ND | 0.0 | ND | Average | ND | ND | 13.3 | 1.3 | ND | ND | 6.0 | ND | 13.9 | ND 2.5 | ND | ND | ND | ND | 1.1 | | | | | | | | | | | | | TOXAPH | IENE (ng/l | L) 2004 | | | | | | | | | | | | |---------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------| | | | JAN | | FEB | | MAR | | APR | | MAY | | JUN | | JUL | | AUG | | SEP | | OCT | | NOV | | DEC | | Week | Inf | Eff | 1 | nd | nd | | | nd | 2 | nd | 3 | nd | | nd | 4 | nd | Avg | nd | | | | | | | | | | | | TOXAPH | IENE (ng/l | L) 2005 | | | | | | | | | | | | | | | JAN | | FEB | | MAR | | APR | | MAY | | JUN | -, | JUL | | AUG | | SEP | | OCT | | NOV | | DEC | | Week | Inf | Eff | 1 | | | ND | ND | ND | ND | ND | ND | | | ND | | ND | ND | | 2 | ND | 3 | ND | 4 | ND | Average | ND | | | | | | | | | | | | TOXAPH | IENE (ng/l | L) 2006 | | | | | | | | | | | | | | | JAN | | FEB | | MAR | | APR | | MAY | | JUN | • | JUL | | AUG | | SEP | | OCT | | NOV | | DEC | | Week | Inf | Eff | 1 | ND | 2 | ND | 3 | ND | 4 | ND | ND | ND | ND | | | ND | | ND | ND | ND | ND | ND | ND | | Average | ND | | | | | | | | | | | | TOXAPH | IENE (ng/l | L) 2007 | | | | | | | | | | | | | | | JAN | | FEB | | MAR | | APR | | MAY | | JUN | | JUL | | AUG | | SEP | | OCT | | NOV | | DEC | | Week | Inf | Eff | 1 | ND | ND | | | ND | ND | ND | ND | ND | ND | | | ND | | | 2 | ND | 3 | ND | 4 | ND | Average | ND | | | | | | | | | | | | TOXAPH | IENE (ng/l | L) 2008 | | | | | | | | | | | | | | | JAN | | FEB | | MAR | | APR | | MAY | | JUN | | JUL | | AUG | | SEP | | OCT | | NOV | | DEC | | Week | Inf | Eff | 1 | ND | | ND | | ND | ND | | 2 | ND | 3 | ND | Average | ND
ND | Average | ND | | | | | | | | | | | | TOXAPH | IENE (ng/l | L) 2009 | | | | | | | | | | | | | | | JAN | | FEB | | MAR | | APR | | MAY | | JUN | | JUL | | AUG | | SEP | | OCT | | NOV | | DEC | | Week | Inf | Eff | 1 | ND | 2 | ND | ND | ND | ND | ND | ND
ND | ND | ND | ND | ND | | | ND ND
ND | | 3 | ND
ND ND | ND | ND
ND | Average | ND
ND | ND | ND | ND
ND ND | ND
ND | ND
ND | | Average | ND IND | ND | | | | | | | | | | | CHLORINA | ATED PHENO | DLIC COMP | OUNDS (ug | L) 2004 | | | | | | | | | | | |---|--|--|--|--|--|--|--|---|--|---|--|---|---|---|--|--|--|---|--|--|--|---|--|---| | | | JAN | | FEB | | MAR | | APR | | MAY | | JUN | | JUL | | AUG | | SEP | | OCT | | NOV | | DEC | | Week | Inf | Eff | 1 | nd | nd | | | nd | 2 | nd | 3
4 | nd | nd
nd | nd | nd | nd
nd | nd
nd | nd
nd | nd
nd | nd | nd
nd | nd
nd | nd
nd | nd | nd | nd
nd | nd
nd | nd
nd | nd | nd
nd | nd | nd
nd | nd
nd | nd
nd | nd | | | nd
nd | nd | nd
nd | nd
nd | nd | nd | nd | nd
nd | nd
nd | nd | nd | nd | nd | nd
nd | nd
nd | nd | nd | nd
nd | nd | nd
nd | nd
nd | nd
nd | nd | nd
nd | | Avg | Hu | IIu | Hu | IIu | IIu | Hu | IIu | | | | | | | | | | | CHLORINA | ATED PHENO | DLIC COMP | OUNDS (ug | ′L) 2005 | | | | | | | | | | | | | | JAN | | FEB | | MAR | | APR | | MAY | | JUN | | JUL | | AUG | | SEP | | OCT | | NOV | | DEC | | Week | Inf | Eff | 1 | | | ND | ND | ND | ND | ND | ND | | | ND | | ND | ND | | 2 | ND 1.9 | ND | 3 | ND
ND | Average | ND
ND 0.5 | ND
ND | ND
ND | ND | ND | ND | ND
ND | ND
ND | ND
ND | ND
ND | ND | | Average | ND 0.5 | ND | | | | | | | | | | | | ATED PHENO | | OUNDS (ug, | | | | | | | | | | | | | | _ | JAN | _ | FEB | | MAR | _ | APR | _ | MAY | | JUN | _ | JUL | | AUG | _ | SEP | | OCT | | NOV | _ | DEC | | Week | Inf | Eff | 1 | ND | 2 | ND
ND ND | ND
ND | ND
ND | ND | ND | ND
ND | ND
ND | ND
ND | ND
ND | ND
ND | | 4 | ND
ND | ND
ND | ND
ND | ND
ND | ND | ND | ND
ND ND | ND | ND
ND | ND
ND | ND
ND | ND
ND | ND
ND | ND
ND | | Average | ND | / wer age | | | | | | | | | | | | | 5 | | | | | 5 | | | | | | | | | | | | | | | | | | | ATED PHENO | | OUNDS (ug, | L) 2007 | | | | | | | | | | | | | | | | FEB | _ | JAN | _ | | _ | MAR | _ | APR | _ | MAY | | JUN | | JUL | | AUG | _ | SEP | | OCT | | NOV | _ | DEC | | Week | Inf | Eff | 1 | ND | Eff
ND | | Eff | ND | Eff
ND | 1 2 | ND
ND | Eff
ND
ND | ND | Eff
ND | ND
ND | Eff
ND
ND | 1
2
3 | ND
ND
ND | ND
ND
ND | ND
ND | Eff
ND
ND | ND
ND
ND | Eff
ND
ND
ND | ND
ND
ND | Eff
ND
ND
ND | ND
ND
ND | Eff
ND
ND
ND | ND | Eff
ND | ND
ND
ND | ND
ND
ND | ND
ND
ND | Eff
ND
ND
ND | ND
ND
ND | ND
ND
ND | ND
ND
ND | Eff
ND
ND
ND | ND
ND
ND | Eff
ND
ND
ND | ND
ND
ND |
Eff
ND
ND
ND | | 1 2 | ND
ND | Eff
ND
ND | ND | Eff
ND | ND
ND | Eff
ND
ND | 1
2
3
4 | ND
ND
ND
ND | Eff
ND
ND
ND
ND | ND
ND
ND | ND
ND
ND | ND
ND
ND
ND | Eff
ND
ND
ND
ND | ND
ND
ND
ND | Eff
ND
ND
ND
ND | ND
ND
ND
ND | Eff
ND
ND
ND
ND
ND | ND
ND
ND | Eff
ND
ND
ND | ND
ND
ND
ND | Eff
ND
ND
ND
ND
ND | ND
ND
ND
ND | Eff
ND
ND
ND
ND | | 1
2
3
4 | ND
ND
ND
ND | Eff
ND
ND
ND
ND | ND
ND
ND | Eff ND ND ND ND | ND
ND
ND
ND | Eff
ND
ND
ND
ND | ND
ND
ND
ND | Eff
ND
ND
ND
ND | ND
ND
ND
ND | Eff ND ND ND ND ND ND CHLORINA | ND
ND
ND | Eff ND ND ND ND ND OLIC COMPO | ND
ND
ND
ND | Eff ND | ND
ND
ND
ND | Eff ND ND ND ND ND ND | ND
ND
ND
ND | Eff
ND
ND
ND
ND
ND | ND
ND
ND
ND | Eff ND ND ND ND ND ND | ND
ND
ND
ND | Eff
ND
ND
ND
ND | ND
ND
ND
ND | Eff
ND
ND
ND
ND | | 1
2
3
4
Average | ND
ND
ND
ND | EFF
ND
ND
ND
ND
ND | ND
ND
ND | Eff ND ND ND ND FEB | ND
ND
ND
ND | Eff
ND
ND
ND
ND
ND | ND
ND
ND
ND | EFF
ND
ND
ND
ND
ND | ND
ND
ND
ND | EFF
ND
ND
ND
ND
ND
CHLORINA
MAY | ND
ND
ND
ND | Eff ND ND ND ND DLIC COMPO | ND
ND
ND
ND
ND | Eff ND ND ND ND ND ND VL) 2008 JUL | ND
ND
ND
ND | EFF
ND
ND
ND
ND
ND | ND
ND
ND
ND | EFF
ND
ND
ND
ND
ND | ND
ND
ND
ND | EFF
ND
ND
ND
ND
ND | ND
ND
ND
ND | EFF
ND
ND
ND
ND
ND | ND
ND
ND
ND | Eff ND ND ND ND ND DEC | | 1
2
3
4 | ND
ND
ND
ND | EFF
ND
ND
ND
ND
ND | ND
ND
ND | Eff ND ND ND ND | ND
ND
ND
ND | Eff
ND
ND
ND
ND | ND
ND
ND
ND | Eff
ND
ND
ND
ND
ND | ND
ND
ND
ND | Eff ND ND ND ND ND ND CHLORINA | ND
ND
ND | Eff ND ND ND ND ND OLIC COMPO | ND
ND
ND
ND | Eff ND | ND
ND
ND
ND | Eff ND ND ND ND ND ND | ND
ND
ND
ND | Eff ND ND ND ND ND SEP Eff | ND
ND
ND
ND | Eff ND ND ND ND OCT Eff | ND
ND
ND
ND | Eff
ND
ND
ND
ND | ND
ND
ND
ND | Eff ND ND ND ND ND DEC Eff | | 1
2
3
4
Average | ND
ND
ND
ND
ND | EFF
ND
ND
ND
ND
ND | ND
ND
ND
ND | ND ND ND ND FEB Eff | ND
ND
ND
ND | Eff
ND
ND
ND
ND
ND
ND | ND
ND
ND
ND
ND | EFF
ND
ND
ND
ND
ND | ND
ND
ND
ND | EFF
ND
ND
ND
ND
ND
CHLORINA
MAY | ND
ND
ND
ND
ATED PHENO | Eff ND ND ND ND OLIC COMPO | ND
ND
ND
ND
ND
OUNDS (ug, | Eff ND ND ND ND ND VL) 2008 JUL Eff | ND
ND
ND
ND | EFF
ND
ND
ND
ND
ND | ND
ND
ND
ND | EFF
ND
ND
ND
ND
ND | ND
ND
ND
ND | EFF
ND
ND
ND
ND
ND | ND
ND
ND
ND | EFF
ND
ND
ND
ND
ND | ND
ND
ND
ND | Eff ND ND ND ND ND DEC | | 1
2
3
4
Average | ND
ND
ND
ND
ND | Eff ND | ND
ND
ND
ND | ND ND ND ND FEB Eff | ND
ND
ND
ND
ND | Eff
ND
ND
ND
ND
ND
ND | ND
ND
ND
ND
ND | Eff ND | ND
ND
ND
ND | Eff ND ND ND ND ND CHLORINA MAY Eff | ND ND ND ND ATED PHENO Inf ND | Eff ND ND ND ND DLIC COMPI JUN Eff ND | ND ND ND ND ND ND ND Inf | Eff ND ND ND ND ND ND VL) 2008 JUL Eff ND | ND
ND
ND
ND
ND | Eff ND | ND
ND
ND
ND
ND | Eff ND ND ND ND ND SEP Eff ND | ND
ND
ND
ND | Eff ND ND ND ND ND OCT Eff ND | ND
ND
ND
ND | Eff ND ND ND ND ND ND ND ND ND FFF | ND
ND
ND
ND
ND | Eff ND ND ND ND ND DEC Eff ND | | 1 2 3 4 Average | ND
ND
ND
ND
ND | Eff ND | ND
ND
ND
ND | ND N | ND
ND
ND
ND
ND | Eff ND | ND
ND
ND
ND
ND | Eff ND | ND
ND
ND
ND
ND | Eff ND ND ND ND ND CHLORIN MAY Eff | ND ND ND ATED PHENC Inf ND ND | Eff ND ND ND ND DLIC COMPI JUN Eff ND ND | ND ND ND ND ND ND ND ND OUNDS (ug, | EFFF ND ND ND ND ND ND VL) 2008 JUL EFFF ND ND | ND
ND
ND
ND
ND | Eff ND AUG Eff ND ND | ND
ND
ND
ND
ND | Eff ND | ND
ND
ND
ND
ND | Eff ND ND ND ND ND OCT Eff ND ND | ND
ND
ND
ND
ND | Eff ND NOV Eff | ND ND ND ND ND ND ND ND | Eff ND | | 1
2
3
4
Average | ND ND ND ND ND ND ND ND ND | Eff ND | ND N | Eff ND ND ND ND ND ND ND ND ND | ND N | Eff ND | ND N | EFF
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND | ND
ND
ND
ND
ND
ND | Eff ND ND ND ND ND CHLORINA MAY Eff ND ND ND | ND ND ND ATED PHENC Inf ND ND ND | Eff ND ND ND ND OLIC COMPORT JUN Eff ND ND ND ND ND | ND ND ND ND OUNDS (ug, Inf ND ND ND | Eff ND | ND N | Eff ND | ND N | Eff ND | ND N | Eff ND | ND
ND
ND
ND
ND
ND | Eff ND NOV Eff | ND N | Eff ND ND ND ND DEC Eff ND ND ND | | 1
2
3
4
Average | ND N | Eff ND | ND N | EFF
ND
ND
ND
ND
ND
FEB
EFF
ND
ND
ND | ND N | EFF
ND
ND
ND
ND
ND
ND
MAR
EFF
ND
ND | ND N | EFF
ND
ND
ND
ND
ND
ND
ND
ND
APR
EFF
ND
ND
ND | ND | Eff ND ND ND ND ND CHLORIN MAY Eff ND | ND ND ND THEN ND | ND N | ND N | Eff ND ND ND ND ND ND ND ND ND | ND N | Eff ND | ND N | EFF ND | ND N | Eff ND ND ND ND ND OCT Eff ND | ND N | Eff ND NOV Eff | ND N | EFF ND ND ND ND DEC EFF ND ND ND ND ND ND ND ND | | 1
2
3
4
Average | ND N | Eff ND | ND N | EFF
ND
ND
ND
ND
ND
FEB
EFF
ND
ND
ND | ND N | EFF
ND
ND
ND
ND
ND
ND
MAR
EFF
ND
ND | ND N | EFF
ND
ND
ND
ND
ND
ND
ND
ND
APR
EFF
ND
ND
ND | ND | Eff ND ND ND ND ND CHLORIN MAY Eff ND | ND ND ND THEN ND | ND N | ND ND ND ND OUNDS (ug, Inf ND ND ND ND ND ND ND ND ND | Eff ND ND ND ND ND ND ND ND ND | ND N | Eff ND | ND N | EFF ND | ND N | Eff ND ND ND ND ND OCT Eff ND | ND N | Eff ND NOV Eff | ND N | EFF ND ND ND ND DEC EFF ND ND ND ND ND ND ND ND | | 1
2
3
4
Average | ND N | Eff ND | ND N | FEB Eff ND | ND N | EFF ND | ND N | EFF ND | ND | EFF ND ND ND ND CHLORINA MAY EFF ND ND ND CHLORION CHLORION CHLORION CHLORION CHLORION | ND ND ND THEN ND | ND N | ND N | Eff ND ND ND ND ND ND ND ND ND NOV Eff ND | ND N | EFF ND ND ND ND DEC EFF ND | | 1 2 3 4 Average Week 1 2 3 4 Average | ND N | Eff ND | ND
ND
ND
ND
ND
ND
ND
ND
ND
ND | EFF ND ND ND ND ND ND ND FEB EFF ND FEB | ND N | EFF ND ND ND ND ND ND ND ND MAR EFF ND | ND N | EFF ND ND ND ND ND APR EFF ND ND ND APR APR APR APR | ND N | Eff ND ND ND ND ND ND ND ND ND CHLORIN MAY Eff ND ND ND ND CHLORIN MAY MAY | ND ND ND TIPE ND | EFF ND ND ND ND DLIC COMPP JUN EFF ND ND ND ND ND ND ND ND ND | ND N | Eff ND ND ND ND ND ND ND ND ND | ND N | Eff ND AUG Eff ND | ND N | EFF ND ND ND ND ND ND ND ND ND | ND N | Eff ND OCT Eff ND | ND N | Eff ND ND ND ND ND ND ND ND ND NOV Eff ND | ND N | EFF ND ND ND ND DEC EFF ND ND ND DEC DEC DEC DEC DEC DEC DEC DEC DEC DE | | 1 2 3 4 Average Week 1 2 3 4 Average Week 1 2 3 4 Average | ND N | Eff ND | ND N | FEB EFF ND | ND N | EFF ND ND ND ND ND ND MAR EFF ND | ND N | EFF ND ND ND ND ND ND ND APR EFF ND | ND N | EFF ND ND ND ND CHLORIN MAY EFF ND ND ND CHLORIN MAY EFF ND ND ND ND ND ND ND ND ND | ND ND ND ATED PHENCE ND ND ND ND ND ND ND ATED PHENCE ND | ND N | ND ND ND ND OUNDS (ug, Inf ND | Eff ND | ND N | Eff ND ND ND ND ND ND AUG Eff ND | ND N | EFF ND ND ND ND ND ND ND SEP EFF ND | ND N | Eff ND ND ND ND ND OCT Eff ND | ND N | ND N | ND N | EFF ND ND ND ND DEC EFF ND ND ND DEC EFF ND | | 1 2 3 4 Average Week 1 2 3 4 Average | ND N | Eff ND | ND N | EFF ND ND ND ND FEB EFF ND | ND N | EFF ND ND ND ND ND ND MAR EFF ND | ND N | EFF ND ND ND ND ND ND ND APR EFF ND | ND N | Eff ND ND ND ND ND CHLORIN MAY Eff ND ND ND CHLORIN MAY Eff ND | ND ND ND ATED PHENO ND | EFF ND | ND N | Eff ND ND ND ND ND ND ND ND ND | ND N | Eff ND ND ND ND ND ND ND AUG Eff ND | ND N | EFF ND | ND N | Eff ND ND ND ND ND OCT Eff ND | ND N | ND N | ND N | EFF ND ND ND DEC EFF ND ND ND DEC EFF ND | | 1 2 3 4 Average Week 1 2 3 4 Average Week 1 2 3 4 Average | ND N | Eff ND | ND N | FEB EFF ND | ND N | EFF ND ND ND ND ND ND MAR EFF ND | ND N | EFF ND ND ND ND ND ND ND APR EFF ND | ND N | EFF ND ND ND ND CHLORIN MAY EFF ND ND ND CHLORIN MAY EFF ND ND ND ND ND ND ND ND ND | ND ND ND ATED PHENCE ND ND ND ND ND ND ND ATED PHENCE ND | ND N | ND ND ND ND OUNDS (ug, Inf ND | Eff ND | ND N | Eff ND ND ND ND ND ND AUG Eff ND | ND N | EFF ND ND ND ND ND ND ND SEP EFF ND | ND N | Eff ND ND ND ND ND OCT Eff ND | ND N | ND N | ND N | EFF ND ND ND ND DEC EFF ND ND ND DEC EFF ND | | | | | | | | | | | | NON-CHLOR | INATED PH | | MPOUNDS (| | 4 | | | | | | | | | | |-----------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|------------------|--------------|--------------|--------------|-------------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------| | | | JAN | | FEB | | MAR | | APR | | MAY | | JUN | | JUL | | AUG | | SEP | | OCT | | NOV | | DEC | | Week | Inf | Eff | 1 2 | 16.9
21 | 13.6
19.6 | 13.8 | 11 | 11.6
13.7 | 13.9
15.7 | 17.5
12.3 | 13.6
11 | 11.5
21.3 | 10.1
19.9 | 16.2
27.5 | 10.6
10.9 | 18.4
20.3 | 11.1
11.1 | 11.4
19 | 9.1
8.8 | 15.9
16.5 | 10.7
9.9 | 14.7
16.4 | 7.4
11.1 | 15.5
16.2 | 10.9
9.7 | 12.5
17.7 | 11.9
10.3 | | 3 | 17.4 | 18 | 15.8 | 12 | 14.7 | 14.7 | 15.6 | 13.3 | 21.3 | 14.2 | 19.4 | 11.1 | 20.5
| 11.1 | 11.8 | 10.4 | 15 | 8.9 | 5.6 | 4.4 | 12.1 | 8.2 | 17.7 | 12.4 | | 4 | 16.6 | 18.4 | 9.1 | 8.8 | 9.7 | 11.9 | 13.5 | 13.2 | 14.6 | 11.9 | 22.5 | 13.4 | 20.2 | 9.6 | 17.8 | 11 | 15 | 7.2 | 7.6 | 4.3 | 16.2 | 12.9 | 11.8 | 7.7 | | Avg | 18 | 17.4 | 12.9 | 10.6 | 12.4 | 14.1 | 14.7 | 12.8 | 17.1 | 14 | 21.4 | 11.5 | 19.6 | 10.6 | 15 | 9.8 | 15.6 | 9.2 | 11.1 | 6.8 | 15 | 10.4 | 15 | 10.6 | JAN | | FEB | | MAR | | APR | | NON-CHLOR
MAY | INATED PH | ENOLIC CO | MPOUNDS (| ug/L) 2005
JUL | 5 | AUG | | SEP | | ОСТ | | NOV | | DEC | | Week | Inf | Eff | 1 | | | 11.3 | 8.1 | 4.3 | 2.9 | 14.6 | 13.7 | | | 16.3 | 11.5 | 17.3 | 11.2 | 9.4 | 5.5 | 13.4 | 8.3 | 13.3 | 939 | | | 19.7 | 15.6 | | 2 | 7.5 | 6.1 | 10.9 | 6.3 | 11.2 | 9.6 | 13.1 | 12.5 | 17.9 | 11.6 | 15 | 13.1 | 18.7 | 12.7 | 13.6 | 10 | 13.1 | 13.4 | 14.3 | 11 | 17.1 | 13.1 | 15.3 | 10.7 | | 3 | 9.1 | 5.9 | 15.2 | 10.2 | 14.6 | 12.6 | 14.9 | 13.5 | 20.4 | 13.5 | 17.2 | 13.6 | 17.8 | 11 | 15.5 | 8.4 | 9.4 | 12.3 | 11.6 | 11.4 | 14.7 | 13.7 | 14.1 | 8.3 | | 4 | 17.3 | 12.2 | 7.9 | 5.6 | 16.1 | 10.8 | 16.7 | 10.2 | 17.7 | 9.3 | 15.5 | 10.6 | 7.9 | 11.6 | 8.2 | 8.4 | 15.5 | 12.5 | 19.5 | 11.9 | 16.2 | 12 | 16.8 | 10.8 | | Average | 11.3 | 8.1 | 11.3 | 7.6 | 11.6 | 9 | 14.8 | 12.5 | 18.7 | 11.5 | 16 | 12.2 | 15.4 | 11.6 | 11.7 | 8.1 | 12.9 | 11.6 | 14.7 | 11 | 16 | 12.9 | 16.5 | 11.4 | | | | | | | | | | | | NON-CHLOR | INATED PH | ENOLIC CO | MPOUNDS (1 | ıg/L) 200€ | 5 | | | | | | | | | | | | | JAN | | FEB | | MAR | | APR | | MAY | | JUN | | JUL | | AUG | | SEP | | OCT | | NOV | | DEC | | Week | Inf | Eff | 1 | 15.8 | 12.4 | 14.1 | 12.9 | 16.5 | 15.9 | 27.3 | 19 | 22 | 10.5 | 14.6 | 13.2 | 26.9 | 13.5 | 20.3 | 13.4 | 21.3 | 15.2 | 14.9 | 10.4 | 16.3 | 7.7 | 19.3 | 13.6 | | 2 | 17.4 | 12.4 | 14.3 | 10.7 | 16.4 | 13.6 | 22.1 | 15.6 | 40.5 | 21.8 | 21.9 | 16.3 | 16.4 | 13.1 | 17 | 12.7 | 11.7 | 10.9 | 19.3 | 13.2 | 19.5 | 13 | 18.2 | 11.9 | | 3 4 | 12.2
12.6 | 10.7
11.6 | 15
15.1 | 12.1
10.4 | 31.5 | 25.6 | 26.7
21.6 | 18.8
18 | 23.5
19.9 | 17.7
12.4 | 21.6
14.7 | 17.3
14.4 | 20.9
18.2 | 13.5
11.9 | 22.5
21.8 | 15.6
11.4 | 11.6 | 9.9 | 17.1
8.2 | 13.4
10 | 16.9
21.3 | 11.5
14.9 | 17.6
26.2 | 13.7
22.5 | | Average | 14.5 | 11.8 | 14.6 | 11.5 | 21.5 | 18.4 | 24.4 | 17.9 | 26.5 | 15.6 | 18.2 | 15.3 | 20.6 | 13.0 | 20.4 | 13.3 | 14.9 | 12.0 | 14.9 | 11.8 | 18.5 | 11.8 | 20.3 | 15.4 | | Average | 14.5 | 11.0 | 14.0 | 11.5 | 21.5 | 10.4 | 2-1 | 17.5 | 20.5 | 13.0 | 10.2 | 13.3 | 20.0 | 13.0 | 20.4 | 13.3 | 14.5 | 12.0 | 14.5 | 11.0 | 10.5 | 11.0 | 20.5 | 13.4 | | | | | | | | | | | | NON-CHLOR | INATED PH | | MPOUNDS (| | 7 | | | | | | | | | | | Heat | T C | JAN | T C | FEB | T - C | MAR | T C | APR | T C | MAY | T C | JUN | T C | JUL | T. C | AUG | T C | SEP | T - C | OCT | T C | NOV | T C | DEC | | Week
1 | Inf
18.8 | Eff
15.1 | Inf | Eff | Inf
16.2 | Eff
12.9 | Inf
19.9 | Eff
17.5 | Inf
20.3 | Eff
15.7 | Inf
16 | Eff
13 | Inf
14.3 | Eff
9.3 | Inf
16 | Eff
10 | Inf
16.2 | Eff
9.4 | Inf
19.4 | Eff
8.7 | Inf
18.5 | Eff
12.3 | Inf
14.2 | Eff
8.8 | | 2 | 16.9 | 15.4 | 15.7 | 12.7 | 16.4 | 14.5 | 17.9 | 16.4 | 20.3 | 12.5 | 20.2 | 13.2 | 12.4 | 10.2 | 14.6 | 8 | 14.7 | 8.7 | 17.7 | 10.5 | 21.6 | 14.5 | 15.5 | 11.6 | | 3 | 19.6 | 20.1 | 29.9 | 15.2 | 17.8 | 13.4 | 12.8 | 11.3 | 20 | 12.6 | 16.8 | 9.3 | 16.9 | 12.4 | 16.3 | 7.9 | 15.4 | 8.9 | 13.7 | 8.1 | 20.3 | 13.3 | 16.4 | 12.2 | | 4 | 11.1 | 16.7 | 16.3 | 13.5 | 16.1 | 13.4 | 19.6 | 14.2 | 16.6 | 11.1 | | | 12.7 | 7.5 | 12 | 6.6 | 15.3 | 17.6 | 17.9 | 10.5 | 17.1 | 12 | | | | Average | 16.6 | 16.8 | 20.6 | 13.8 | 16.6 | 13.6 | 17.6 | 14.9 | 19.5 | 13.0 | 17.7 | 11.8 | 14.1 | 9.9 | 14.7 | 8.1 | 15.4 | 11.2 | 17.2 | 9.5 | 19.4 | 13.0 | 15.4 | 10.9 | | | | | | | | | | | | NON-CHLOR | TNATED DU | ENOLTC CO | MDOLINDS (| ıa/I \ 2009 | 0 | | | | | | | | | | | | | JAN | | FEB | | MAR | | APR | | MAY | INAILD FII | JUN | TI CONIO (| JUL | | AUG | | SEP | | ОСТ | | NOV | | DEC | | Week | Inf | Eff | 1 | 18.8 | 15.0 | 17.4 | 11.1 | 18.9 | 13.3 | 19.8 | 11.6 | | | 18.4 | 12.0 | 16.8 | 11.5 | 14.6 | 11.2 | 14.3 | 9.9 | 15.2 | 12.3 | | | 15.2 | 13.1 | | 2 | 16.8 | 10.7 | 15.4 | 9.5 | 17.9 | 13.7 | 23.0 | 16.7 | 17.8 | 15.4 | 21.9 | 15.3 | 21.8 | 12.8 | 18.7 | 13.8 | 19.4 | 11.5 | 11.2 | 9.1 | 16.7 | 11.8 | 16.3 | 16.4 | | 3 | 18.9 | 13.0 | 17.2 | 13.5 | 20.0 | 11.3 | 22.6 | 15.4 | 19.5 | 17.4 | 27.0 | 10.1 | 16.7 | 8.3 | 16.5 | 14.4 | 12.2 | 10.4 | 14.3 | 10.3 | 14.2 | 12.5 | 4.8 | 6.1 | | 4 | 17.7 | 9.4 | 17.4 | 13.0 | 16.4 | 12.9 | 21.1 | 17.7 | 19.6 | 13.3 | 22.4 | 12.1 | 13.6 | 9.7 | 19.3 | 11.3 | 11.2 | 8.9 | 14.4 | 12.9 | 16.5 | 15.0 | 14.9 | 13.7 | | Average | 18.1 | 12.0 | 16.9 | 11.8 | 18.3 | 12.8 | 21.6 | 15.4 | 19.0 | 15.4 | 22.4 | 12.4 | 17.2 | 10.6 | 17.3 | 12.7 | 14.3 | 10.2 | 13.8 | 11.2 | 15.8 | 13.1 | 12.8 | 12.3 | | | | | | | | | | | | NON-CHLOR | INATED PH | ENOLIC CO | MPOUNDS (| ug/L) 2009 | 9 | | | | | | | | | | | | | JAN | | FEB | | MAR | | APR | | MAY | | JUN | | JUL | | AUG | | SEP | | OCT | | NOV | | DEC | | Week | Inf | Eff | Inf | Eff
12.7 | Inf | Eff | | 1 | 17.2 | 14.3 | 15.6 | 14.3 | 14 5 | 12 / | 18.5 | 17.4 | 17.6 | 16.2 | 19.2 | 13.7 | 22.0 | 15.0 | 19.2 | 14.3 | 22.0 | 12 7 | 22.5 | 18.2 | 16.6 | 13.5 | 16.4 | 12.7 | | 2 3 | 13.2
15.0 | 11.8
13.1 | 15.7
16.0 | 12.0
12.6 | 14.5
17.7 | 13.4
15.3 | 16.2
13.5 | 17.3
12.8 | 19.4
20.3 | 13.8
17.5 | 18.2
18.0 | 15.3
13.4 | 19.1
20.4 | 18.3
14.5 | 26.7
19.4 | 17.4
12.0 | 22.0
17.1 | 12.7
11.7 | 21.4
22.6 | 13.1
17.1 | 22.6
20.6 | 14.3
13.8 | 15.0
19.1 | 8.6
13.3 | | 4 | 17.4 | 17.5 | 17.3 | 13.8 | 18.6 | 16.8 | 19.6 | 16.0 | 16.0 | 14.9 | 20.5 | 10.2 | 20.4 | 14.1 | 19.4 | 14.0 | 21.4 | 11.5 | 23.0 | 15.0 | 23.1 | 19.1 | 17.9 | 16.4 | | Average | 15.7 | 14.2 | 16.2 | 13.2 | 16.9 | 15.2 | 17.0 | 15.9 | 18.3 | 15.6 | 19.0 | 13.2 | 20.5 | 15.5 | 21.2 | 14.4 | 20.2 | 12.0 | 22.4 | 15.9 | 20.7 | 15.2 | 17.1 | 12.8 | | Average | 23.7 |